Properties

Label 1327104.dk
Order \( 2^{14} \cdot 3^{4} \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{19} \cdot 3^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{6} \)
Perm deg. not computed
Trans deg. $24$
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (3,5,4,6)(7,9,8,10)(15,16)(17,18)(19,23,22)(20,24,21), (1,14,5,17,2,13,6,18)(3,16)(4,15)(7,19,9,22)(8,20,10,21)(11,24,12,23), (9,12,10,11)(13,14)(15,16)(19,23)(20,24)(21,22), (1,10,2,9)(3,8,6,11)(4,7,5,12)(13,20,15,23,14,19,16,24)(17,22)(18,21), (21,22)(23,24) >;
 
Copy content gap:G := Group( (3,5,4,6)(7,9,8,10)(15,16)(17,18)(19,23,22)(20,24,21), (1,14,5,17,2,13,6,18)(3,16)(4,15)(7,19,9,22)(8,20,10,21)(11,24,12,23), (9,12,10,11)(13,14)(15,16)(19,23)(20,24)(21,22), (1,10,2,9)(3,8,6,11)(4,7,5,12)(13,20,15,23,14,19,16,24)(17,22)(18,21), (21,22)(23,24) );
 
Copy content sage:G = PermutationGroup(['(3,5,4,6)(7,9,8,10)(15,16)(17,18)(19,23,22)(20,24,21)', '(1,14,5,17,2,13,6,18)(3,16)(4,15)(7,19,9,22)(8,20,10,21)(11,24,12,23)', '(9,12,10,11)(13,14)(15,16)(19,23)(20,24)(21,22)', '(1,10,2,9)(3,8,6,11)(4,7,5,12)(13,20,15,23,14,19,16,24)(17,22)(18,21)', '(21,22)(23,24)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2294454472234114230831526441044444006849488070341387581347255723305220472008946826897376900319040197990091705740382885073812317482258669631179227190345277617725443934969476662434948787740444082619584753739851925221578182147879864179888963094287638744409376130932791624124489369495443966821396059987114380880844779762301903171232444943261081328988642708402638988685111734869096243415402907431962513035347299545583333058763928225698964171508111332547786277337047068264785526288856105320175707036078683496161359590280536707354465483254694040205527167394033309275118423710255561369228681714932235069548764224107454701326862147312925842636010620179621882655572509058726559967996467285105980472396218188279287578741556350405358469992964480560671264486885782459712,1327104)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17; m = G.18;
 

Group information

Description:$A_4^2\wr C_2.C_2^2.C_2^3$
Order: \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^8.C_3^4.C_2^6.C_2^4.C_2$, of order \(42467328\)\(\medspace = 2^{19} \cdot 3^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 14, $C_3$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12
Elements 1 12319 6560 237024 274016 373248 423936 1327104
Conjugacy classes   1 37 7 80 65 18 66 274
Divisions 1 37 7 78 65 16 62 266
Autjugacy classes 1 20 5 30 33 4 18 111

Minimal presentations

Permutation degree:not computed
Transitive degree:$24$
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m \mid b^{4}=f^{6}=g^{6}=h^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([18, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 17563824, 26655193, 91, 29113562, 78166659, 20218197, 7465143, 5730105, 67219924, 6998782, 14930320, 8582638, 256, 64302341, 40538903, 19316489, 24251, 565799, 136119318, 22303032, 28743162, 19370292, 2489586, 4046586, 366, 82951, 67394329, 69163, 18323773, 8977039, 5234209, 15685, 3701384, 104602778, 47892428, 3382622, 1703024, 1681676, 840428, 476, 33937929, 58579227, 985005, 51903, 43317, 1109295, 217768330, 97339996, 60730606, 19103104, 7170850, 3549844, 2559070, 1222588, 586, 123510539, 64198685, 31726127, 17604929, 202259, 1850807, 1314281, 404364, 89766174, 33965634, 16982868, 8643126, 480324, 236046, 78816, 40224, 44851981, 99283999, 23514691, 979861, 9634567, 2068537, 535405, 13783, 57649, 27427, 349920014, 134369312, 23444708, 13122086, 787424, 1924682, 100634, 26942, 334430223, 80621601, 6034245, 31191, 502971, 2733, 136422160, 12360022, 23629408, 3470146, 3442624, 796048, 187432, 220498, 24064, 13066, 252502289, 67184675, 5458823, 1049849, 5143931, 350045, 280097, 145979, 116837, 7019]); a,b,c,d,e,f,g,h,i,j,k,l,m := Explode([G.1, G.2, G.4, G.5, G.7, G.9, G.11, G.13, G.14, G.15, G.16, G.17, G.18]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "i", "j", "k", "l", "m"]);
 
Copy content gap:G := PcGroupCode(2294454472234114230831526441044444006849488070341387581347255723305220472008946826897376900319040197990091705740382885073812317482258669631179227190345277617725443934969476662434948787740444082619584753739851925221578182147879864179888963094287638744409376130932791624124489369495443966821396059987114380880844779762301903171232444943261081328988642708402638988685111734869096243415402907431962513035347299545583333058763928225698964171508111332547786277337047068264785526288856105320175707036078683496161359590280536707354465483254694040205527167394033309275118423710255561369228681714932235069548764224107454701326862147312925842636010620179621882655572509058726559967996467285105980472396218188279287578741556350405358469992964480560671264486885782459712,1327104); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.9; g := G.11; h := G.13; i := G.14; j := G.15; k := G.16; l := G.17; m := G.18;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2294454472234114230831526441044444006849488070341387581347255723305220472008946826897376900319040197990091705740382885073812317482258669631179227190345277617725443934969476662434948787740444082619584753739851925221578182147879864179888963094287638744409376130932791624124489369495443966821396059987114380880844779762301903171232444943261081328988642708402638988685111734869096243415402907431962513035347299545583333058763928225698964171508111332547786277337047068264785526288856105320175707036078683496161359590280536707354465483254694040205527167394033309275118423710255561369228681714932235069548764224107454701326862147312925842636010620179621882655572509058726559967996467285105980472396218188279287578741556350405358469992964480560671264486885782459712,1327104)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17; m = G.18;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2294454472234114230831526441044444006849488070341387581347255723305220472008946826897376900319040197990091705740382885073812317482258669631179227190345277617725443934969476662434948787740444082619584753739851925221578182147879864179888963094287638744409376130932791624124489369495443966821396059987114380880844779762301903171232444943261081328988642708402638988685111734869096243415402907431962513035347299545583333058763928225698964171508111332547786277337047068264785526288856105320175707036078683496161359590280536707354465483254694040205527167394033309275118423710255561369228681714932235069548764224107454701326862147312925842636010620179621882655572509058726559967996467285105980472396218188279287578741556350405358469992964480560671264486885782459712,1327104)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17; m = G.18;
 
Permutation group:Degree $24$ $\langle(3,5,4,6)(7,9,8,10)(15,16)(17,18)(19,23,22)(20,24,21), (1,14,5,17,2,13,6,18) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (3,5,4,6)(7,9,8,10)(15,16)(17,18)(19,23,22)(20,24,21), (1,14,5,17,2,13,6,18)(3,16)(4,15)(7,19,9,22)(8,20,10,21)(11,24,12,23), (9,12,10,11)(13,14)(15,16)(19,23)(20,24)(21,22), (1,10,2,9)(3,8,6,11)(4,7,5,12)(13,20,15,23,14,19,16,24)(17,22)(18,21), (21,22)(23,24) >;
 
Copy content gap:G := Group( (3,5,4,6)(7,9,8,10)(15,16)(17,18)(19,23,22)(20,24,21), (1,14,5,17,2,13,6,18)(3,16)(4,15)(7,19,9,22)(8,20,10,21)(11,24,12,23), (9,12,10,11)(13,14)(15,16)(19,23)(20,24)(21,22), (1,10,2,9)(3,8,6,11)(4,7,5,12)(13,20,15,23,14,19,16,24)(17,22)(18,21), (21,22)(23,24) );
 
Copy content sage:G = PermutationGroup(['(3,5,4,6)(7,9,8,10)(15,16)(17,18)(19,23,22)(20,24,21)', '(1,14,5,17,2,13,6,18)(3,16)(4,15)(7,19,9,22)(8,20,10,21)(11,24,12,23)', '(9,12,10,11)(13,14)(15,16)(19,23)(20,24)(21,22)', '(1,10,2,9)(3,8,6,11)(4,7,5,12)(13,20,15,23,14,19,16,24)(17,22)(18,21)', '(21,22)(23,24)'])
 
Transitive group: 24T21663 24T21672 36T39610 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_2^8.C_3.S_3^3)$ . $D_4$ $C_2^8$ . $(C_3:S_3^3:D_4)$ $(A_4^2.S_4^2:C_2^3)$ . $C_2$ $(C_2^9.C_3:S_3^3)$ . $C_2^2$ all 31

Elements of the group are displayed as permutations of degree 24.

Homology

Abelianization: $C_{2}^{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 85 normal subgroups (15 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $A_4^2:\POPlus(4,3).C_2^3$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^8.C_3^3.D_6$ $G/G' \simeq$ $C_2^4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $A_4^2:\POPlus(4,3).C_2^3$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^9$ $G/\operatorname{Fit} \simeq$ $C_3^4.Q_8:C_2^2$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $A_4^2\wr C_2.C_2^2.C_2^3$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^9$ $G/\operatorname{soc} \simeq$ $C_3^4.Q_8:C_2^2$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^8.C_2.C_2^5$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4$

Subgroup diagram and profile

Series

Derived series $A_4^2\wr C_2.C_2^2.C_2^3$ $\rhd$ $C_2^8.C_3^3.D_6$ $\rhd$ $C_2^8.C_3^4$ $\rhd$ $C_2^8$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $A_4^2\wr C_2.C_2^2.C_2^3$ $\rhd$ $A_4^2.S_4^2:C_2^3$ $\rhd$ $C_2^8.C_3^4.C_2^4$ $\rhd$ $C_2^8.C_3^4.C_2^3$ $\rhd$ $C_2^8.C_3^3.D_6$ $\rhd$ $C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4$ $\rhd$ $C_2^8$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $A_4^2\wr C_2.C_2^2.C_2^3$ $\rhd$ $C_2^8.C_3^3.D_6$ $\rhd$ $C_2^8.C_3^4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 7 larger groups in the database.

This group is a maximal quotient of 3 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $274 \times 274$ character table is not available for this group.

Rational character table

The $266 \times 266$ rational character table is not available for this group.