Properties

Label 1320.13
Order \( 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Exponent \( 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 1 \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $24$
Trans deg. $24$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content magma:G := SL(2, 11);
 
Copy content gap:G := SL(2, 11);
 
Copy content sage:G = SL(2, 11)
 
Copy content sage_gap:G = libgap.SmallGroup(1320, 13)
 
Copy content comment:Define the group as a permutation group
 

Group information

Description:$\SL(2,11)$
Order: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$\PGL(2,11)$, of order \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$, $\PSL(2,11)$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$0$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and quasisimple (hence nonsolvable and perfect).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 10 11 12 22
Elements 1 1 110 110 264 110 264 120 220 120 1320
Conjugacy classes   1 1 1 1 2 1 2 2 2 2 15
Divisions 1 1 1 1 1 1 1 1 1 1 10
Autjugacy classes 1 1 1 1 2 1 2 1 2 1 13

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 5 6 10 11 12 20 24
Irr. complex chars.   1 2 2 5 1 4 0 0 15
Irr. rational chars. 1 0 0 4 1 1 1 2 10

Minimal presentations

Permutation degree:$24$
Transitive degree:$24$
Rank: $2$
Inequivalent generating pairs: $1016$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 6 12 12
Arbitrary 6 12 12

Constructions

Show commands: Gap / Magma / SageMath


Groups of Lie type:$\SL(2,11)$, $\SU(2,11)$
Permutation group:Degree $24$ $\langle(1,3,2)(4,7,5)(6,8,11)(9,12,16)(10,13,18)(14,19,23)(15,17,21)(20,22,24) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,3,2)(4,7,5)(6,8,11)(9,12,16)(10,13,18)(14,19,23)(15,17,21)(20,22,24), (1,2,4,5)(3,6,7,9)(8,10,12,14)(11,15,16,20)(13,17,19,22)(18,21,23,24), (1,4)(2,5)(3,7)(6,9)(8,12)(10,14)(11,16)(13,19)(15,20)(17,22)(18,23)(21,24) >;
 
Copy content gap:G := Group( (1,3,2)(4,7,5)(6,8,11)(9,12,16)(10,13,18)(14,19,23)(15,17,21)(20,22,24), (1,2,4,5)(3,6,7,9)(8,10,12,14)(11,15,16,20)(13,17,19,22)(18,21,23,24), (1,4)(2,5)(3,7)(6,9)(8,12)(10,14)(11,16)(13,19)(15,20)(17,22)(18,23)(21,24) );
 
Copy content sage:G = PermutationGroup(['(1,3,2)(4,7,5)(6,8,11)(9,12,16)(10,13,18)(14,19,23)(15,17,21)(20,22,24)', '(1,2,4,5)(3,6,7,9)(8,10,12,14)(11,15,16,20)(13,17,19,22)(18,21,23,24)', '(1,4)(2,5)(3,7)(6,9)(8,12)(10,14)(11,16)(13,19)(15,20)(17,22)(18,23)(21,24)'])
 
Matrix group:$\left\langle \left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 1 & 1 \end{array}\right) \right\rangle \subseteq \GL_{2}(\F_{11})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 2, GF(11) | [[1, 1, 0, 1], [1, 0, 1, 1]] >;
 
Copy content gap:G := Group([[[ Z(11)^0, Z(11)^0 ], [ 0*Z(11), Z(11)^0 ]], [[ Z(11)^0, 0*Z(11) ], [ Z(11)^0, Z(11)^0 ]]]);
 
Copy content sage:MS = MatrixSpace(GF(11), 2, 2) G = MatrixGroup([MS([[1, 1], [0, 1]]), MS([[1, 0], [1, 1]])])
 
Transitive group: 24T2947 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $C_2$ . $\PSL(2,11)$ more information

Elements of the group are displayed as matrices in $\SL(2,11)$.

Homology

Abelianization: $C_1 $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_1$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 766 subgroups in 21 conjugacy classes, 3 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $\PSL(2,11)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $\SL(2,11)$ $G/G' \simeq$ $C_1$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $\PSL(2,11)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2$ $G/\operatorname{Fit} \simeq$ $\PSL(2,11)$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2$ $G/R \simeq$ $\PSL(2,11)$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2$ $G/\operatorname{soc} \simeq$ $\PSL(2,11)$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $Q_8$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5$
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $\SL(2,11)$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $\SL(2,11)$ $\rhd$ $C_2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $\SL(2,11)$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 12 larger groups in the database.

This group is a maximal quotient of 8 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

1A 2A 3A 4A 5A1 5A2 6A 10A1 10A3 11A1 11A-1 12A1 12A5 22A1 22A-1
Size 1 1 110 110 132 132 110 132 132 60 60 110 110 60 60
2 P 1A 1A 3A 2A 5A2 5A1 3A 5A1 5A2 11A-1 11A1 6A 6A 11A1 11A-1
3 P 1A 2A 1A 4A 5A2 5A1 2A 10A3 10A1 11A1 11A-1 4A 4A 22A1 22A-1
5 P 1A 2A 3A 4A 1A 1A 6A 2A 2A 11A1 11A-1 12A5 12A1 22A1 22A-1
11 P 1A 2A 3A 4A 5A1 5A2 6A 10A1 10A3 1A 1A 12A1 12A5 2A 2A
Type
1320.13.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1320.13.5a1 C 5 5 1 1 0 0 1 0 0 ζ1121ζ11ζ113ζ114ζ115 ζ112+ζ11+ζ113+ζ114+ζ115 1 1 ζ112+ζ11+ζ113+ζ114+ζ115 ζ1121ζ11ζ113ζ114ζ115
1320.13.5a2 C 5 5 1 1 0 0 1 0 0 ζ112+ζ11+ζ113+ζ114+ζ115 ζ1121ζ11ζ113ζ114ζ115 1 1 ζ1121ζ11ζ113ζ114ζ115 ζ112+ζ11+ζ113+ζ114+ζ115
1320.13.6a1 C 6 6 0 0 1 1 0 1 1 ζ112ζ11ζ113ζ114ζ115 ζ112+1+ζ11+ζ113+ζ114+ζ115 0 0 ζ1121ζ11ζ113ζ114ζ115 ζ112+ζ11+ζ113+ζ114+ζ115
1320.13.6a2 C 6 6 0 0 1 1 0 1 1 ζ112+1+ζ11+ζ113+ζ114+ζ115 ζ112ζ11ζ113ζ114ζ115 0 0 ζ112+ζ11+ζ113+ζ114+ζ115 ζ1121ζ11ζ113ζ114ζ115
1320.13.10a R 10 10 1 2 0 0 1 0 0 1 1 1 1 1 1
1320.13.10b R 10 10 1 2 0 0 1 0 0 1 1 1 1 1 1
1320.13.10c S 10 10 2 0 0 0 2 0 0 1 1 0 0 1 1
1320.13.10d1 S 10 10 1 0 0 0 1 0 0 1 1 ζ121ζ12 ζ121+ζ12 1 1
1320.13.10d2 S 10 10 1 0 0 0 1 0 0 1 1 ζ121+ζ12 ζ121ζ12 1 1
1320.13.11a R 11 11 1 1 1 1 1 1 1 0 0 1 1 0 0
1320.13.12a1 R 12 12 0 0 ζ52+ζ52 ζ51+ζ5 0 ζ51+ζ5 ζ52+ζ52 1 1 0 0 1 1
1320.13.12a2 R 12 12 0 0 ζ51+ζ5 ζ52+ζ52 0 ζ52+ζ52 ζ51+ζ5 1 1 0 0 1 1
1320.13.12b1 S 12 12 0 0 ζ52+ζ52 ζ51+ζ5 0 ζ51ζ5 ζ52ζ52 1 1 0 0 1 1
1320.13.12b2 S 12 12 0 0 ζ51+ζ5 ζ52+ζ52 0 ζ52ζ52 ζ51ζ5 1 1 0 0 1 1

Rational character table

1A 2A 3A 4A 5A 6A 10A 11A 12A 22A
Size 1 1 110 110 264 110 264 120 220 120
2 P 1A 1A 3A 2A 5A 3A 5A 11A 6A 11A
3 P 1A 2A 1A 4A 5A 2A 10A 11A 4A 22A
5 P 1A 2A 3A 4A 1A 6A 2A 11A 12A 22A
11 P 1A 2A 3A 4A 5A 6A 10A 1A 12A 2A
Schur
1320.13.1a 1 1 1 1 1 1 1 1 1 1
1320.13.5a 10 10 2 2 0 2 0 1 2 1
1320.13.6a 12 12 0 0 2 0 2 1 0 1
1320.13.10a 10 10 1 2 0 1 0 1 1 1
1320.13.10b 10 10 1 2 0 1 0 1 1 1
1320.13.10c 2 10 10 2 0 0 2 0 1 0 1
1320.13.10d 2 20 20 2 0 0 2 0 2 0 2
1320.13.11a 11 11 1 1 1 1 1 0 1 0
1320.13.12a 24 24 0 0 1 0 1 2 0 2
1320.13.12b 2 24 24 0 0 1 0 1 2 0 2