Properties

Label 1310720000.hu
Order \( 2^{21} \cdot 5^{4} \)
Exponent \( 2^{4} \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{24} \cdot 5^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $40$
Trans deg. $40$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (3,6,9,8,4,5,10,7)(11,14,17,15,12,13,18,16)(21,30,24,25,22,29,23,26)(31,35,37,34,32,36,38,33), (1,34,9,35,6,39,8,37,2,33,10,36,5,40,7,38)(3,32,4,31)(11,24,17,30,19,21,13,25)(12,23,18,29,20,22,14,26)(15,27)(16,28), (1,19,6,14,9,18,3,12,8,15)(2,20,5,13,10,17,4,11,7,16)(21,35,22,36)(23,38,24,37)(25,40,26,39)(27,31,28,32)(29,34)(30,33) >;
 
Copy content gap:G := Group( (3,6,9,8,4,5,10,7)(11,14,17,15,12,13,18,16)(21,30,24,25,22,29,23,26)(31,35,37,34,32,36,38,33), (1,34,9,35,6,39,8,37,2,33,10,36,5,40,7,38)(3,32,4,31)(11,24,17,30,19,21,13,25)(12,23,18,29,20,22,14,26)(15,27)(16,28), (1,19,6,14,9,18,3,12,8,15)(2,20,5,13,10,17,4,11,7,16)(21,35,22,36)(23,38,24,37)(25,40,26,39)(27,31,28,32)(29,34)(30,33) );
 
Copy content sage:G = PermutationGroup(['(3,6,9,8,4,5,10,7)(11,14,17,15,12,13,18,16)(21,30,24,25,22,29,23,26)(31,35,37,34,32,36,38,33)', '(1,34,9,35,6,39,8,37,2,33,10,36,5,40,7,38)(3,32,4,31)(11,24,17,30,19,21,13,25)(12,23,18,29,20,22,14,26)(15,27)(16,28)', '(1,19,6,14,9,18,3,12,8,15)(2,20,5,13,10,17,4,11,7,16)(21,35,22,36)(23,38,24,37)(25,40,26,39)(27,31,28,32)(29,34)(30,33)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(264098550421441113890231393560996677016134657874507313057984505105612242629784675732176357821359782403933781743476487667435869963122849713994535036847050895486081085342130837871940208317132441175856476171569337846772208219236171002255830006707304563388647075595474865904029536148068077634070453543573149924498461249422087236211746345862800367478505125400720161905990085535601998218045036953259711083096122241632831947642366067261787079185312213993422715131059263658312142024143905378196302646935424833225048247923760442371842594208542272093390035575593879250412206803485745400976297358117791685092366615662227755381487583142409913779311684561429195216914006506508303094175356105944170793505370440542962116161413061600418015376882565432517938640000967366954039468138766014051484769820955889065181049703095583835550291936185107767124175541342970533925057395341286813947942618485760468006092852608162710157573005811143437215372927534586789711573357944571384551938669370384522302791083005643882921439203348531192852485484295246054529108524192157165155980737123384323156411904396768629685649933813305289654536783817647438997029017669868550970535994145819756596467008357576400262279783462272235550396408791904789956766151920922275301495721254775456383974958772261607990422632508064431857050481319715030651094891643712186785643724392581770096318573174419142214544016499737357818246582752403957440931554634479953235197864365941892659803875929351778748381140692908859095028575056542095292132431568370609763036390850014201092334849709039060633494411353516065880663956401929553364977389537192239704154329729515219671761527732237542407074981541018228862936675783546789258143352483170299386783295203647290315716760235495250586901601568210457377731176315829641503987364242539230487161906965139701592595514941515248118525592160898149355279748806236963538075296488708622332435513627940999763941384255063280170775950359358610117499342543481510459226010838849607505344794198016,1310720000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.8; f = G.10; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17; m = G.18; n = G.19; o = G.20; p = G.21; q = G.22; r = G.23; s = G.24; t = G.25;
 

Group information

Description:$C_2^{16}.C_5^2.D_5:F_5.C_2^2$
Order: \(1310720000\)\(\medspace = 2^{21} \cdot 5^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(10485760000\)\(\medspace = 2^{24} \cdot 5^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 21, $C_5$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 5 8 10 16 20
Elements 1 455935 70880000 17850624 471040000 136093440 491520000 122880000 1310720000
Conjugacy classes   1 50 133 24 48 165 16 105 542
Divisions 1 50 131 24 26 104 8 62 406
Autjugacy classes 1 37 84 10 30 64 4 40 270

Minimal presentations

Permutation degree:$40$
Transitive degree:$40$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 20 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t \mid c^{10}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([25, 2, 2, 2, 2, 2, 5, 5, 2, 5, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 50, 18720641026, 55132220102, 34947229377, 202, 69837629603, 12018926828, 6682550078, 115465823004, 78325417029, 26242876554, 19836317329, 354, 186984744005, 41241004830, 25002609655, 1795577480, 176854367206, 34636378031, 17055689056, 27436601581, 8638444606, 2706179131, 798962656, 42522496007, 1476160032, 20142320057, 12976180082, 4365540107, 4908530132, 1455356157, 582, 20028636008, 112558860033, 9607770058, 23761305083, 13909590108, 7973167633, 1295833658, 326546592009, 95527000034, 33486250059, 38108500084, 4830127609, 5223531384, 1290575159, 281502684, 9301459, 734, 330388238410, 3216400035, 1602700060, 7157700085, 13676099360, 825135, 389152660, 186492000011, 31236000036, 1740000061, 7806000086, 13570575111, 1951500136, 390300161, 873236, 4246761, 53911000012, 82855500037, 67457325062, 44232500087, 22759750112, 7641603262, 1724206412, 303468937, 32540837, 9187987, 8387, 403802000013, 71407000038, 63644350063, 55674500088, 14224962613, 8421043888, 1807312663, 327022688, 35078963, 7238, 4947513, 233896500014, 215843250039, 97230375064, 14938125089, 7757812614, 2536406389, 265603289, 149381439, 24909589, 9680000015, 92336000040, 16540000065, 17468000090, 23945000115, 5095000140, 106760190, 41030215, 167246000016, 55403850041, 35156425066, 64876462591, 10030106366, 13581990766, 1867460791, 510191441, 320003966, 12167991, 6069266, 520146000017, 178929000042, 44644500067, 21111750092, 36375862617, 11580187642, 80325167, 25132692, 146081467, 315242, 6514017, 577866000018, 57209000043, 77957475068, 28222125093, 3701556368, 18473403268, 2482706418, 238877693, 32929593, 14055493, 7011268, 446740000019, 104191000044, 129360000069, 5950250094, 23535000119, 10071250144, 67387669, 150350194, 384887719, 12840244, 92769, 448016100020, 316848000045, 90704775070, 17015512595, 12552881370, 10506562645, 841050170, 266122695, 256593970, 2719745, 6087645, 449572200021, 164704100046, 17331050071, 54370250096, 24345887621, 11763812646, 743476421, 765930196, 437387721, 5670746, 9980021, 303278000022, 174133000047, 98871250072, 20127875097, 30821581372, 186156397, 160137672, 426276447, 148695222, 3191497, 2234147, 623592000023, 232200000048, 58518600073, 15519300098, 33004500123, 12852750148, 2343900173, 63810198, 395310223, 26334248, 13161273, 510752500024, 327251250049, 117575625074, 65847187599, 36534375124, 7885234524, 195953299, 822093949, 320109599, 53031499, 26509649]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t := Explode([G.1, G.3, G.5, G.7, G.8, G.10, G.12, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22, G.23, G.24, G.25]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "e", "e2", "f", "f2", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t"]);
 
Copy content gap:G := PcGroupCode(264098550421441113890231393560996677016134657874507313057984505105612242629784675732176357821359782403933781743476487667435869963122849713994535036847050895486081085342130837871940208317132441175856476171569337846772208219236171002255830006707304563388647075595474865904029536148068077634070453543573149924498461249422087236211746345862800367478505125400720161905990085535601998218045036953259711083096122241632831947642366067261787079185312213993422715131059263658312142024143905378196302646935424833225048247923760442371842594208542272093390035575593879250412206803485745400976297358117791685092366615662227755381487583142409913779311684561429195216914006506508303094175356105944170793505370440542962116161413061600418015376882565432517938640000967366954039468138766014051484769820955889065181049703095583835550291936185107767124175541342970533925057395341286813947942618485760468006092852608162710157573005811143437215372927534586789711573357944571384551938669370384522302791083005643882921439203348531192852485484295246054529108524192157165155980737123384323156411904396768629685649933813305289654536783817647438997029017669868550970535994145819756596467008357576400262279783462272235550396408791904789956766151920922275301495721254775456383974958772261607990422632508064431857050481319715030651094891643712186785643724392581770096318573174419142214544016499737357818246582752403957440931554634479953235197864365941892659803875929351778748381140692908859095028575056542095292132431568370609763036390850014201092334849709039060633494411353516065880663956401929553364977389537192239704154329729515219671761527732237542407074981541018228862936675783546789258143352483170299386783295203647290315716760235495250586901601568210457377731176315829641503987364242539230487161906965139701592595514941515248118525592160898149355279748806236963538075296488708622332435513627940999763941384255063280170775950359358610117499342543481510459226010838849607505344794198016,1310720000); a := G.1; b := G.3; c := G.5; d := G.7; e := G.8; f := G.10; g := G.12; h := G.13; i := G.14; j := G.15; k := G.16; l := G.17; m := G.18; n := G.19; o := G.20; p := G.21; q := G.22; r := G.23; s := G.24; t := G.25;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(264098550421441113890231393560996677016134657874507313057984505105612242629784675732176357821359782403933781743476487667435869963122849713994535036847050895486081085342130837871940208317132441175856476171569337846772208219236171002255830006707304563388647075595474865904029536148068077634070453543573149924498461249422087236211746345862800367478505125400720161905990085535601998218045036953259711083096122241632831947642366067261787079185312213993422715131059263658312142024143905378196302646935424833225048247923760442371842594208542272093390035575593879250412206803485745400976297358117791685092366615662227755381487583142409913779311684561429195216914006506508303094175356105944170793505370440542962116161413061600418015376882565432517938640000967366954039468138766014051484769820955889065181049703095583835550291936185107767124175541342970533925057395341286813947942618485760468006092852608162710157573005811143437215372927534586789711573357944571384551938669370384522302791083005643882921439203348531192852485484295246054529108524192157165155980737123384323156411904396768629685649933813305289654536783817647438997029017669868550970535994145819756596467008357576400262279783462272235550396408791904789956766151920922275301495721254775456383974958772261607990422632508064431857050481319715030651094891643712186785643724392581770096318573174419142214544016499737357818246582752403957440931554634479953235197864365941892659803875929351778748381140692908859095028575056542095292132431568370609763036390850014201092334849709039060633494411353516065880663956401929553364977389537192239704154329729515219671761527732237542407074981541018228862936675783546789258143352483170299386783295203647290315716760235495250586901601568210457377731176315829641503987364242539230487161906965139701592595514941515248118525592160898149355279748806236963538075296488708622332435513627940999763941384255063280170775950359358610117499342543481510459226010838849607505344794198016,1310720000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.8; f = G.10; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17; m = G.18; n = G.19; o = G.20; p = G.21; q = G.22; r = G.23; s = G.24; t = G.25;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(264098550421441113890231393560996677016134657874507313057984505105612242629784675732176357821359782403933781743476487667435869963122849713994535036847050895486081085342130837871940208317132441175856476171569337846772208219236171002255830006707304563388647075595474865904029536148068077634070453543573149924498461249422087236211746345862800367478505125400720161905990085535601998218045036953259711083096122241632831947642366067261787079185312213993422715131059263658312142024143905378196302646935424833225048247923760442371842594208542272093390035575593879250412206803485745400976297358117791685092366615662227755381487583142409913779311684561429195216914006506508303094175356105944170793505370440542962116161413061600418015376882565432517938640000967366954039468138766014051484769820955889065181049703095583835550291936185107767124175541342970533925057395341286813947942618485760468006092852608162710157573005811143437215372927534586789711573357944571384551938669370384522302791083005643882921439203348531192852485484295246054529108524192157165155980737123384323156411904396768629685649933813305289654536783817647438997029017669868550970535994145819756596467008357576400262279783462272235550396408791904789956766151920922275301495721254775456383974958772261607990422632508064431857050481319715030651094891643712186785643724392581770096318573174419142214544016499737357818246582752403957440931554634479953235197864365941892659803875929351778748381140692908859095028575056542095292132431568370609763036390850014201092334849709039060633494411353516065880663956401929553364977389537192239704154329729515219671761527732237542407074981541018228862936675783546789258143352483170299386783295203647290315716760235495250586901601568210457377731176315829641503987364242539230487161906965139701592595514941515248118525592160898149355279748806236963538075296488708622332435513627940999763941384255063280170775950359358610117499342543481510459226010838849607505344794198016,1310720000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.8; f = G.10; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17; m = G.18; n = G.19; o = G.20; p = G.21; q = G.22; r = G.23; s = G.24; t = G.25;
 
Permutation group:Degree $40$ $\langle(3,6,9,8,4,5,10,7)(11,14,17,15,12,13,18,16)(21,30,24,25,22,29,23,26)(31,35,37,34,32,36,38,33) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (3,6,9,8,4,5,10,7)(11,14,17,15,12,13,18,16)(21,30,24,25,22,29,23,26)(31,35,37,34,32,36,38,33), (1,34,9,35,6,39,8,37,2,33,10,36,5,40,7,38)(3,32,4,31)(11,24,17,30,19,21,13,25)(12,23,18,29,20,22,14,26)(15,27)(16,28), (1,19,6,14,9,18,3,12,8,15)(2,20,5,13,10,17,4,11,7,16)(21,35,22,36)(23,38,24,37)(25,40,26,39)(27,31,28,32)(29,34)(30,33) >;
 
Copy content gap:G := Group( (3,6,9,8,4,5,10,7)(11,14,17,15,12,13,18,16)(21,30,24,25,22,29,23,26)(31,35,37,34,32,36,38,33), (1,34,9,35,6,39,8,37,2,33,10,36,5,40,7,38)(3,32,4,31)(11,24,17,30,19,21,13,25)(12,23,18,29,20,22,14,26)(15,27)(16,28), (1,19,6,14,9,18,3,12,8,15)(2,20,5,13,10,17,4,11,7,16)(21,35,22,36)(23,38,24,37)(25,40,26,39)(27,31,28,32)(29,34)(30,33) );
 
Copy content sage:G = PermutationGroup(['(3,6,9,8,4,5,10,7)(11,14,17,15,12,13,18,16)(21,30,24,25,22,29,23,26)(31,35,37,34,32,36,38,33)', '(1,34,9,35,6,39,8,37,2,33,10,36,5,40,7,38)(3,32,4,31)(11,24,17,30,19,21,13,25)(12,23,18,29,20,22,14,26)(15,27)(16,28)', '(1,19,6,14,9,18,3,12,8,15)(2,20,5,13,10,17,4,11,7,16)(21,35,22,36)(23,38,24,37)(25,40,26,39)(27,31,28,32)(29,34)(30,33)'])
 
Transitive group: 40T240450 40T240451 40T240452 40T240453 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_2^{16}.C_5^3.F_5)$ . $C_2^3$ $(C_2^{16}.C_5^3.C_{10})$ . $\OD_{16}$ (2) $C_2^{16}$ . $(C_5^4:(C_2\times \OD_{16}))$ $(C_2^{16}.C_5^3.D_{10}.C_2)$ . $C_4$ (4) all 13

Elements of the group are displayed as permutations of degree 40.

Homology

Abelianization: $C_{2}^{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{3}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 36 normal subgroups (20 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^{15}.C_4.C_2^4$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^4$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 8 larger groups in the database.

This group is a maximal quotient of 10 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $542 \times 542$ character table is not available for this group.

Rational character table

The $406 \times 406$ rational character table is not available for this group.