Properties

Label 13060694016.lq
Order \( 2^{13} \cdot 3^{13} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{14} \cdot 3^{13} \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $36$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,32,20,15)(2,33,21,13)(3,31,19,14)(4,29,23,10,6,28,22,11)(5,30,24,12)(7,9,8)(35,36), (1,15,26)(2,14,25)(3,13,27)(4,36,29,23,17,11,6,35,30,24,16,12,5,34,28,22,18,10)(7,21,31,9,19,32,8,20,33), (1,16,2,17,3,18)(4,13,23,33)(5,15,22,31,6,14,24,32)(7,30)(8,28)(9,29)(10,26,12,25,11,27)(19,36,21,35)(20,34) >;
 
Copy content gap:G := Group( (1,32,20,15)(2,33,21,13)(3,31,19,14)(4,29,23,10,6,28,22,11)(5,30,24,12)(7,9,8)(35,36), (1,15,26)(2,14,25)(3,13,27)(4,36,29,23,17,11,6,35,30,24,16,12,5,34,28,22,18,10)(7,21,31,9,19,32,8,20,33), (1,16,2,17,3,18)(4,13,23,33)(5,15,22,31,6,14,24,32)(7,30)(8,28)(9,29)(10,26,12,25,11,27)(19,36,21,35)(20,34) );
 
Copy content sage:G = PermutationGroup(['(1,32,20,15)(2,33,21,13)(3,31,19,14)(4,29,23,10,6,28,22,11)(5,30,24,12)(7,9,8)(35,36)', '(1,15,26)(2,14,25)(3,13,27)(4,36,29,23,17,11,6,35,30,24,16,12,5,34,28,22,18,10)(7,21,31,9,19,32,8,20,33)', '(1,16,2,17,3,18)(4,13,23,33)(5,15,22,31,6,14,24,32)(7,30)(8,28)(9,29)(10,26,12,25,11,27)(19,36,21,35)(20,34)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(48851580211155618584576758575347982246162734146284567932254505308708513341792832283131708183095946434662977698606977749923174771512236178319993488936376088308573744344934583415902247902555883759606072565288267268726779992873858609418682584348188558748200881172014255148082698252333909128396153359436698998253434863390250801042838565858169510487801439831282464489290017496485167979034468511206087049729388280030747110217495754636469309748497756565711736597540764458544212085468475383427823276734758383668226491769384242002096635331349539194689111663788031913850870935021714198582936697669539669780835797116143838942835440676715151412158586003247931260988710580930363395632110968659482632934879854856085230133436726706027662768874963649061059979239253868611585893771596132997757286740976014481810795962925069613985360897787298158807872875647996662314500350361300612166965972991814546261381818428451229538903936712002135469381082746555130131474546266688396237542347578006358631970860569782072710787906873082225698299858885476882495009942061202490362818166706077821759166616878214546713906589165423805419679985015911086590920781813053371778651551593690443664779498416879764223432007436619090072092161216970626434230397987496717579303532866225380980520138890129538729112455102449157105471517623316359276324817976428022979159838365507439682288118220067327804332711669648221216749563627407993276747304097631596515001722921703638932757407391772187722975893454911110560235071184873004867018568734078259300550262322183293866107267029591238719190949259100231476397304050525459305058676365662517260619770389954659429330994705994845393321054935980765915791502451302601840995733194121482561734240560143582242481543774777376198508073727195718890124195424927957996218066362190504201567091742616117058583512440109436126089395960556344374156932858373721763964239745026440462638098501565107729952596347815205691135072339927620682748093149642820982187190689168835501983183734712337002024648942502454191590757809418282544363947038798825648263134971864627135778321905776982232981577033901230837254013806125501957971050895158008911395954410742779658737945136661400134374453698769439409766007132672235227126181157519500596871571296371382507889218623248266994770142134663061775036092372872391651623768047918322802540534439688460512480682450618981190270334282087711876013011447933240283658384822007848228715773992826255489708607706406830446912508292460333339866423227156568789941839646522951009728300566922723598845245603300297495247887572281997318385249988749982042579467410322569697512504080618453364127915174830210737158694230013987804671,13060694016)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.20; m = G.21; n = G.22; o = G.23; p = G.24; q = G.25; r = G.26;
 

Group information

Description:$C_3^{12}.C_2.C_2^6.S_4.D_4$
Order: \(13060694016\)\(\medspace = 2^{13} \cdot 3^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(26121388032\)\(\medspace = 2^{14} \cdot 3^{13} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13, $C_3$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 18 24 36
Elements 1 2495583 3890672 239368608 1315261584 675205632 268738560 4085852544 2338025472 3406261248 725594112 13060694016
Conjugacy classes   1 30 131 51 976 16 12 451 21 72 2 1763
Divisions 1 30 131 51 976 15 12 450 21 59 2 1748
Autjugacy classes 1 29 118 46 906 13 9 422 15 59 1 1619

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r \mid f^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([26, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 190922232384, 371771967113, 131, 705418733138, 238861748790, 637048600035, 64117332269, 130224554671, 289, 642764993524, 472072100790, 365469266036, 47579257548, 800350664261, 868775697535, 303661141113, 69145312163, 38257019221, 447, 567185376582, 716698164032, 137217697402, 62047051332, 42319444550, 10318404258, 1970749707271, 627021323169, 41409251579, 38133818197, 50621467631, 14301854665, 15691267651, 605, 518379272, 1089088157698, 91391846892, 243563142038, 16976378128, 9090943194, 12999655820, 1217016, 2510264240649, 1632531276515, 348977466301, 186400566647, 76652929713, 46841219499, 49131845, 9494256911, 1427617, 2456957158666, 709842536868, 409389881534, 259300149768, 81293587346, 43213893148, 20974869510, 6334431152, 2966610, 826784, 842, 657506315, 638337061, 258906046527, 141142050905, 24265433203, 11330482317, 12959399, 676081729, 1620123, 1620149, 602543265804, 1343229024422, 1011610010176, 85869695066, 17561247092, 31793523982, 18784320424, 21300127458, 4696077580, 2383050318, 1205559068, 1000, 1185452556301, 1564771074087, 566227544129, 45751666779, 169334710389, 68474585231, 7641257, 781283971, 1904669, 4407050167, 12741729, 3707110667534, 371953370920, 44195832786, 300315827852, 52924204438, 67235934624, 28803565610, 23932415716, 281022, 140648, 575914, 512760, 389958986, 85762, 1158, 171419369487, 690370117673, 29812064323, 298680385629, 159446237303, 79723118737, 11563389125, 239839, 120057, 60179, 10311, 1361757616144, 841011065898, 97672481156, 413306689630, 154765571704, 102076173202, 25066619308, 6682785606, 10586444768, 23168122, 16516932, 620870, 416942464, 222983166, 87275048, 1316, 3899169570833, 2804822691883, 43553562693, 158661255263, 33887992441, 121830748563, 44851263149, 4242730951, 6505484769, 12669947, 404629, 88384937, 72929757, 54632466, 27316268, 409907257414, 378438967392, 5900304506, 1060211144, 5122018, 35950, 6362, 11386552339, 2239586119725, 458912563271, 17252352097, 1166930043, 99590400149, 291433161, 12464824547, 3116206359, 519368011, 86561663, 8355795, 58813267988, 2539603842094, 230331838536, 242297782370, 243105408124, 97981857942, 215115440, 23482158538, 31135332, 26889662, 13444984, 2241116, 354192, 36472, 4928226361365, 11386552367, 768883095625, 94888035, 219096244349, 27387030731, 40031129, 185765, 1992750170134, 2779658618928, 1283369617994, 463571896420, 73166266494, 133823559320, 1252413106, 21223163724, 700607462, 156551872, 127101594, 13046302, 4650434, 617574, 7885429014551, 2976244457521, 1341583147083, 177987084389, 281148242047, 159026949273, 14591176883, 8206368973, 1455667431, 409204481, 393030427, 34100687, 12130947, 1786327, 6133354905624, 2617259673650, 1747663756876, 376532582502, 39410841728, 164357107354, 83890310580, 9832867406, 12184848232, 1245254658, 1229061884, 225061536, 84216988, 3658640, 8555855413273, 1059732990003, 775381561421, 730868443239, 309623575169, 117750979995, 43057198261, 9962574543, 8392999913, 3849566083, 2128913565, 320797489, 60475349, 20661705]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r := Explode([G.1, G.2, G.4, G.6, G.8, G.10, G.11, G.13, G.15, G.17, G.19, G.20, G.21, G.22, G.23, G.24, G.25, G.26]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "l", "m", "n", "o", "p", "q", "r"]);
 
Copy content gap:G := PcGroupCode(48851580211155618584576758575347982246162734146284567932254505308708513341792832283131708183095946434662977698606977749923174771512236178319993488936376088308573744344934583415902247902555883759606072565288267268726779992873858609418682584348188558748200881172014255148082698252333909128396153359436698998253434863390250801042838565858169510487801439831282464489290017496485167979034468511206087049729388280030747110217495754636469309748497756565711736597540764458544212085468475383427823276734758383668226491769384242002096635331349539194689111663788031913850870935021714198582936697669539669780835797116143838942835440676715151412158586003247931260988710580930363395632110968659482632934879854856085230133436726706027662768874963649061059979239253868611585893771596132997757286740976014481810795962925069613985360897787298158807872875647996662314500350361300612166965972991814546261381818428451229538903936712002135469381082746555130131474546266688396237542347578006358631970860569782072710787906873082225698299858885476882495009942061202490362818166706077821759166616878214546713906589165423805419679985015911086590920781813053371778651551593690443664779498416879764223432007436619090072092161216970626434230397987496717579303532866225380980520138890129538729112455102449157105471517623316359276324817976428022979159838365507439682288118220067327804332711669648221216749563627407993276747304097631596515001722921703638932757407391772187722975893454911110560235071184873004867018568734078259300550262322183293866107267029591238719190949259100231476397304050525459305058676365662517260619770389954659429330994705994845393321054935980765915791502451302601840995733194121482561734240560143582242481543774777376198508073727195718890124195424927957996218066362190504201567091742616117058583512440109436126089395960556344374156932858373721763964239745026440462638098501565107729952596347815205691135072339927620682748093149642820982187190689168835501983183734712337002024648942502454191590757809418282544363947038798825648263134971864627135778321905776982232981577033901230837254013806125501957971050895158008911395954410742779658737945136661400134374453698769439409766007132672235227126181157519500596871571296371382507889218623248266994770142134663061775036092372872391651623768047918322802540534439688460512480682450618981190270334282087711876013011447933240283658384822007848228715773992826255489708607706406830446912508292460333339866423227156568789941839646522951009728300566922723598845245603300297495247887572281997318385249988749982042579467410322569697512504080618453364127915174830210737158694230013987804671,13060694016); a := G.1; b := G.2; c := G.4; d := G.6; e := G.8; f := G.10; g := G.11; h := G.13; i := G.15; j := G.17; k := G.19; l := G.20; m := G.21; n := G.22; o := G.23; p := G.24; q := G.25; r := G.26;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(48851580211155618584576758575347982246162734146284567932254505308708513341792832283131708183095946434662977698606977749923174771512236178319993488936376088308573744344934583415902247902555883759606072565288267268726779992873858609418682584348188558748200881172014255148082698252333909128396153359436698998253434863390250801042838565858169510487801439831282464489290017496485167979034468511206087049729388280030747110217495754636469309748497756565711736597540764458544212085468475383427823276734758383668226491769384242002096635331349539194689111663788031913850870935021714198582936697669539669780835797116143838942835440676715151412158586003247931260988710580930363395632110968659482632934879854856085230133436726706027662768874963649061059979239253868611585893771596132997757286740976014481810795962925069613985360897787298158807872875647996662314500350361300612166965972991814546261381818428451229538903936712002135469381082746555130131474546266688396237542347578006358631970860569782072710787906873082225698299858885476882495009942061202490362818166706077821759166616878214546713906589165423805419679985015911086590920781813053371778651551593690443664779498416879764223432007436619090072092161216970626434230397987496717579303532866225380980520138890129538729112455102449157105471517623316359276324817976428022979159838365507439682288118220067327804332711669648221216749563627407993276747304097631596515001722921703638932757407391772187722975893454911110560235071184873004867018568734078259300550262322183293866107267029591238719190949259100231476397304050525459305058676365662517260619770389954659429330994705994845393321054935980765915791502451302601840995733194121482561734240560143582242481543774777376198508073727195718890124195424927957996218066362190504201567091742616117058583512440109436126089395960556344374156932858373721763964239745026440462638098501565107729952596347815205691135072339927620682748093149642820982187190689168835501983183734712337002024648942502454191590757809418282544363947038798825648263134971864627135778321905776982232981577033901230837254013806125501957971050895158008911395954410742779658737945136661400134374453698769439409766007132672235227126181157519500596871571296371382507889218623248266994770142134663061775036092372872391651623768047918322802540534439688460512480682450618981190270334282087711876013011447933240283658384822007848228715773992826255489708607706406830446912508292460333339866423227156568789941839646522951009728300566922723598845245603300297495247887572281997318385249988749982042579467410322569697512504080618453364127915174830210737158694230013987804671,13060694016)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.20; m = G.21; n = G.22; o = G.23; p = G.24; q = G.25; r = G.26;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(48851580211155618584576758575347982246162734146284567932254505308708513341792832283131708183095946434662977698606977749923174771512236178319993488936376088308573744344934583415902247902555883759606072565288267268726779992873858609418682584348188558748200881172014255148082698252333909128396153359436698998253434863390250801042838565858169510487801439831282464489290017496485167979034468511206087049729388280030747110217495754636469309748497756565711736597540764458544212085468475383427823276734758383668226491769384242002096635331349539194689111663788031913850870935021714198582936697669539669780835797116143838942835440676715151412158586003247931260988710580930363395632110968659482632934879854856085230133436726706027662768874963649061059979239253868611585893771596132997757286740976014481810795962925069613985360897787298158807872875647996662314500350361300612166965972991814546261381818428451229538903936712002135469381082746555130131474546266688396237542347578006358631970860569782072710787906873082225698299858885476882495009942061202490362818166706077821759166616878214546713906589165423805419679985015911086590920781813053371778651551593690443664779498416879764223432007436619090072092161216970626434230397987496717579303532866225380980520138890129538729112455102449157105471517623316359276324817976428022979159838365507439682288118220067327804332711669648221216749563627407993276747304097631596515001722921703638932757407391772187722975893454911110560235071184873004867018568734078259300550262322183293866107267029591238719190949259100231476397304050525459305058676365662517260619770389954659429330994705994845393321054935980765915791502451302601840995733194121482561734240560143582242481543774777376198508073727195718890124195424927957996218066362190504201567091742616117058583512440109436126089395960556344374156932858373721763964239745026440462638098501565107729952596347815205691135072339927620682748093149642820982187190689168835501983183734712337002024648942502454191590757809418282544363947038798825648263134971864627135778321905776982232981577033901230837254013806125501957971050895158008911395954410742779658737945136661400134374453698769439409766007132672235227126181157519500596871571296371382507889218623248266994770142134663061775036092372872391651623768047918322802540534439688460512480682450618981190270334282087711876013011447933240283658384822007848228715773992826255489708607706406830446912508292460333339866423227156568789941839646522951009728300566922723598845245603300297495247887572281997318385249988749982042579467410322569697512504080618453364127915174830210737158694230013987804671,13060694016)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.20; m = G.21; n = G.22; o = G.23; p = G.24; q = G.25; r = G.26;
 
Permutation group:Degree $36$ $\langle(1,32,20,15)(2,33,21,13)(3,31,19,14)(4,29,23,10,6,28,22,11)(5,30,24,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,32,20,15)(2,33,21,13)(3,31,19,14)(4,29,23,10,6,28,22,11)(5,30,24,12)(7,9,8)(35,36), (1,15,26)(2,14,25)(3,13,27)(4,36,29,23,17,11,6,35,30,24,16,12,5,34,28,22,18,10)(7,21,31,9,19,32,8,20,33), (1,16,2,17,3,18)(4,13,23,33)(5,15,22,31,6,14,24,32)(7,30)(8,28)(9,29)(10,26,12,25,11,27)(19,36,21,35)(20,34) >;
 
Copy content gap:G := Group( (1,32,20,15)(2,33,21,13)(3,31,19,14)(4,29,23,10,6,28,22,11)(5,30,24,12)(7,9,8)(35,36), (1,15,26)(2,14,25)(3,13,27)(4,36,29,23,17,11,6,35,30,24,16,12,5,34,28,22,18,10)(7,21,31,9,19,32,8,20,33), (1,16,2,17,3,18)(4,13,23,33)(5,15,22,31,6,14,24,32)(7,30)(8,28)(9,29)(10,26,12,25,11,27)(19,36,21,35)(20,34) );
 
Copy content sage:G = PermutationGroup(['(1,32,20,15)(2,33,21,13)(3,31,19,14)(4,29,23,10,6,28,22,11)(5,30,24,12)(7,9,8)(35,36)', '(1,15,26)(2,14,25)(3,13,27)(4,36,29,23,17,11,6,35,30,24,16,12,5,34,28,22,18,10)(7,21,31,9,19,32,8,20,33)', '(1,16,2,17,3,18)(4,13,23,33)(5,15,22,31,6,14,24,32)(7,30)(8,28)(9,29)(10,26,12,25,11,27)(19,36,21,35)(20,34)'])
 
Transitive group: 36T108977 36T109231 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^{12}$ . $(C_2^7.(D_4\times S_4))$ $(C_3^{12}.C_2^5.C_2^5)$ . $S_4$ $(C_3^{12}.C_2^6.C_2^5)$ . $D_6$ (3) $(C_3^{12}.C_2^6)$ . $(C_2\wr S_4)$ (2) all 36

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 44 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_3^{12}.C_2^5.C_2^4.C_6$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^7.D_4^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{12}.C_3$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $1763 \times 1763$ character table is not available for this group.

Rational character table

The $1748 \times 1748$ rational character table is not available for this group.