Group information
| Description: | $C_4^2.C_2^3$ | |
| Order: | \(128\)\(\medspace = 2^{7} \) |
|
| Exponent: | \(8\)\(\medspace = 2^{3} \) |
|
| Automorphism group: | $C_2^8.D_4$, of order \(2048\)\(\medspace = 2^{11} \) |
|
| Composition factors: | $C_2$ x 7 |
|
| Nilpotency class: | $3$ |
|
| Derived length: | $2$ |
|
This group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Group statistics
| Order | 1 | 2 | 4 | 8 | |
|---|---|---|---|---|---|
| Elements | 1 | 23 | 72 | 32 | 128 |
| Conjugacy classes | 1 | 6 | 15 | 10 | 32 |
| Divisions | 1 | 6 | 13 | 6 | 26 |
| Autjugacy classes | 1 | 4 | 8 | 4 | 17 |
| Dimension | 1 | 2 | 4 | 8 | |
|---|---|---|---|---|---|
| Irr. complex chars. | 16 | 12 | 4 | 0 | 32 |
| Irr. rational chars. | 16 | 4 | 4 | 2 | 26 |
Minimal presentations
| Permutation degree: | $24$ |
| Transitive degree: | $64$ |
| Rank: | $4$ |
| Inequivalent generating quadruples: | $40320$ |
Minimal degrees of faithful linear representations
| Over $\mathbb{C}$ | Over $\mathbb{R}$ | Over $\mathbb{Q}$ | |
|---|---|---|---|
| Irreducible | none | none | none |
| Arbitrary | 6 | 12 | 12 |
Constructions
| Presentation: |
$\langle a, b, c, d \mid a^{2}=b^{2}=c^{4}=d^{8}=[a,c]=[b,d]=[c,d]=1, b^{a}=bc^{2}, d^{a}=d^{3}, c^{b}=cd^{4} \rangle$
| |||||||
|
| ||||||||
| Permutation group: | Degree $24$
$\langle(1,2)(3,11)(4,12)(5,8)(6,9)(7,13)(10,16)(14,15)(18,22)(19,24), (1,3)(2,8) \!\cdots\! \rangle$
| |||||||
|
| ||||||||
| Direct product: | not isomorphic to a non-trivial direct product | |||||||
| Semidirect product: | $(C_8:Q_8)$ $\,\rtimes\,$ $C_2$ | $(C_8:D_4)$ $\,\rtimes\,$ $C_2$ (2) | $(C_8.D_4)$ $\,\rtimes\,$ $C_2$ | $(D_8:C_4)$ $\,\rtimes\,$ $C_2$ | all 10 | |||
| Trans. wreath product: | not isomorphic to a non-trivial transitive wreath product | |||||||
| Non-split product: | $C_4^2$ . $C_2^3$ (2) | $(C_8:D_4)$ . $C_2$ | $(C_4:C_4)$ . $D_4$ (2) | $C_8$ . $(D_4:C_2)$ (4) | all 34 | |||
Elements of the group are displayed as words in the presentation generators from the presentation above.
Homology
| Abelianization: | $C_{2}^{4} $ |
|
| Schur multiplier: | $C_{2}^{4}$ |
|
| Commutator length: | $1$ |
|
Subgroups
There are 348 subgroups in 181 conjugacy classes, 88 normal (34 characteristic).
Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.
Special subgroups
| Center: | $Z \simeq$ $C_2^2$ | $G/Z \simeq$ $C_2^2\times D_4$ |
|
| Commutator: | $G' \simeq$ $C_2\times C_4$ | $G/G' \simeq$ $C_2^4$ |
|
| Frattini: | $\Phi \simeq$ $C_2\times C_4$ | $G/\Phi \simeq$ $C_2^4$ |
|
| Fitting: | $\operatorname{Fit} \simeq$ $C_4^2.C_2^3$ | $G/\operatorname{Fit} \simeq$ $C_1$ |
|
| Radical: | $R \simeq$ $C_4^2.C_2^3$ | $G/R \simeq$ $C_1$ |
|
| Socle: | $\operatorname{soc} \simeq$ $C_2^2$ | $G/\operatorname{soc} \simeq$ $C_2^2\times D_4$ |
|
| 2-Sylow subgroup: | $P_{ 2 } \simeq$ $C_4^2.C_2^3$ |
Subgroup diagram and profile
To see subgroups sorted vertically by order instead, check this box.
Subgroup information
Series
| Derived series | $C_4^2.C_2^3$ | $\rhd$ | $C_2\times C_4$ | $\rhd$ | $C_1$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Chief series | $C_4^2.C_2^3$ | $\rhd$ | $\OD_{16}:C_4$ | $\rhd$ | $C_4\times C_8$ | $\rhd$ | $C_2\times C_8$ | $\rhd$ | $C_2\times C_4$ | $\rhd$ | $C_4$ | $\rhd$ | $C_2$ | $\rhd$ | $C_1$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Lower central series | $C_4^2.C_2^3$ | $\rhd$ | $C_2\times C_4$ | $\rhd$ | $C_2$ | $\rhd$ | $C_1$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Upper central series | $C_1$ | $\lhd$ | $C_2^2$ | $\lhd$ | $C_4^2:C_2$ | $\lhd$ | $C_4^2.C_2^3$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Supergroups
This group is a maximal subgroup of 86 larger groups in the database.
This group is a maximal quotient of 156 larger groups in the database.
Character theory
Complex character table
See the $32 \times 32$ character table. Alternatively, you may search for characters of this group with desired properties.
Rational character table
See the $26 \times 26$ rational character table.