Properties

Label 127...000.b
Order \( 2^{37} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \)
Exponent \( 2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2 \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{38} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $40$
Trans deg. $40$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,20,2,19)(3,38,36,7,21,10,16,17,13,32,27,34,25,24,30)(4,37,35,8,22,9,15,18,14,31,28,33,26,23,29)(5,11,40,6,12,39), (1,4,19,31,30,38,34)(2,3,20,32,29,37,33)(5,17,12,6,18,11)(7,8)(9,28,10,27)(13,24,35,15,39,26,21,14,23,36,16,40,25,22) >;
 
Copy content gap:G := Group( (1,20,2,19)(3,38,36,7,21,10,16,17,13,32,27,34,25,24,30)(4,37,35,8,22,9,15,18,14,31,28,33,26,23,29)(5,11,40,6,12,39), (1,4,19,31,30,38,34)(2,3,20,32,29,37,33)(5,17,12,6,18,11)(7,8)(9,28,10,27)(13,24,35,15,39,26,21,14,23,36,16,40,25,22) );
 
Copy content sage:G = PermutationGroup(['(1,20,2,19)(3,38,36,7,21,10,16,17,13,32,27,34,25,24,30)(4,37,35,8,22,9,15,18,14,31,28,33,26,23,29)(5,11,40,6,12,39)', '(1,4,19,31,30,38,34)(2,3,20,32,29,37,33)(5,17,12,6,18,11)(7,8)(9,28,10,27)(13,24,35,15,39,26,21,14,23,36,16,40,25,22)'])
 

Group information

Description:$C_2^{19}.A_{20}.C_2$
Order: \(127\!\cdots\!000\)\(\medspace = 2^{37} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(465585120\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(255\!\cdots\!000\)\(\medspace = 2^{38} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 20, $A_{20}$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$1$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, nonsolvable, and rational.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 26 28 30 32 33 34 35 36 38 39 40 42 44 45 48 51 52 55 56 60 63 65 66 68 70 72 77 78 80 84 88 90 91 96 99 102 104 105 110 112 120 126 130 132 140 144 154 156 165 168 176 180 182 198 210 220 240 252 260 264 280 308 312 330 336 360 420 440 504 560 840
Elements 1 63003419470847 10212735104853920 17203133482517140480 10740238573479450624 565340273523554719840 141229689307545600 3462482266327540039680 506291534199108403200 5735950395546231318528 624121085952000 30268077740344121016320 152093507715072000 1878315779560406630400 10312031041947619246080 33202980806816327270400 1563163392233963520000 46196173054626752102400 33566877054287216640000 80135094764237181419520 116283039142005964800 105470846436114432000 62158629757948054732800 990280828732833792000 22677182145705856204800 46074503655081969500160 26573777667977379840000 123446157832617984000 29700104452445306880000 344376231068329574400 56949136786112643072000 33566877054287216640000 723965096723742720000 22657670098406678200320 23014621934403983769600 4778211118424260608000 600678099369905356800 36349424516670160896000 12505307137871708160000 11702682857628499968000 30197474622701568000 19835489670918045696000 84219052980331012423680 869974864130211840000 1226482046214340608000 11684884844629721088000 18757960706807562240000 16798930401611848089600 19392530607702540288000 1035341987064053760000 19376712882900172800000 12957880158099446169600 47817633303330029568000 13105703986252480512000 18045255897660889497600 7008468835510517760000 13286888833988689920000 6442127919509667840000 12505307137871708160000 8176546974762270720000 184276493947581235200 4559818668027936768000 5314755533595475968000 42907072422653145907200 9886078001479680000000 13491302508357746688000 21440206982118113280000 21132875779083023155200 8857925889325793280000 11388761857704591360000 19419299065060392960000 966319187926450176000 18394256420175347712000 7247393909448376320000 17494403631418441728000 7008468835510517760000 6442127919509667840000 8850807913164727910400 7972133300393213952000 7086340711460634624000 6959798913041694720000 4905928184857362432000 4831595939632250880000 5030036487152861184000 4141367948256215040000 4088273487381135360000 6764234315485151232000 3796253952568197120000 3543170355730317312000 10502969268772012032000 2898957563779350528000 2530835968378798080000 2277752371540918272000 1518501581027278848000 1275541328062914232320000
Conjugacy classes   1 66 6 450 4 577 2 557 5 190 1 2354 1 91 12 172 1 170 1 626 6 29 1493 19 258 597 7 3 5 3 289 1 2 393 253 62 4 260 1 28 1 152 1238 2 1 59 2 79 108 1 24 68 437 26 68 1 2 1 1 8 3 17 24 438 24 7 56 108 10 7 14 1 140 2 50 1 1 85 12 42 12 2 10 34 2 2 7 10 10 60 2 2 2 8 12484
Divisions 1 66 6 450 4 577 2 557 5 190 1 2354 1 91 12 172 1 170 1 626 6 29 1493 19 258 597 7 3 5 3 289 1 2 393 253 62 4 260 1 28 1 152 1238 2 1 59 2 79 108 1 24 68 437 26 68 1 2 1 1 8 3 17 24 438 24 7 56 108 10 7 14 1 140 2 50 1 1 85 12 42 12 2 10 34 2 2 7 10 10 60 2 2 2 8 12484
Autjugacy classes 1 50 6 355 4 440 2 446 5 145 1 1804 1 70 12 140 1 133 1 477 6 23 1152 15 196 463 6 3 4 3 212 1 2 301 197 46 4 201 1 20 1 114 921 2 1 47 1 63 80 1 20 52 321 19 56 1 1 1 1 6 3 14 18 327 21 6 39 78 7 6 9 1 104 1 33 1 1 70 8 31 8 1 7 25 1 1 7 7 7 41 1 1 1 4 9549

Minimal presentations

Permutation degree:$40$
Transitive degree:$40$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $40$ $\langle(1,20,2,19)(3,38,36,7,21,10,16,17,13,32,27,34,25,24,30)(4,37,35,8,22,9,15,18,14,31,28,33,26,23,29) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,20,2,19)(3,38,36,7,21,10,16,17,13,32,27,34,25,24,30)(4,37,35,8,22,9,15,18,14,31,28,33,26,23,29)(5,11,40,6,12,39), (1,4,19,31,30,38,34)(2,3,20,32,29,37,33)(5,17,12,6,18,11)(7,8)(9,28,10,27)(13,24,35,15,39,26,21,14,23,36,16,40,25,22) >;
 
Copy content gap:G := Group( (1,20,2,19)(3,38,36,7,21,10,16,17,13,32,27,34,25,24,30)(4,37,35,8,22,9,15,18,14,31,28,33,26,23,29)(5,11,40,6,12,39), (1,4,19,31,30,38,34)(2,3,20,32,29,37,33)(5,17,12,6,18,11)(7,8)(9,28,10,27)(13,24,35,15,39,26,21,14,23,36,16,40,25,22) );
 
Copy content sage:G = PermutationGroup(['(1,20,2,19)(3,38,36,7,21,10,16,17,13,32,27,34,25,24,30)(4,37,35,8,22,9,15,18,14,31,28,33,26,23,29)(5,11,40,6,12,39)', '(1,4,19,31,30,38,34)(2,3,20,32,29,37,33)(5,17,12,6,18,11)(7,8)(9,28,10,27)(13,24,35,15,39,26,21,14,23,36,16,40,25,22)'])
 
Transitive group: 40T315783 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^{19}$ . $S_{20}$ $(C_2^{19}.A_{20})$ . $C_2$ $C_2$ . $(C_2^{18}.A_{20}.C_2)$ more information

Elements of the group are displayed as permutations of degree 40.

Homology

Abelianization: $C_{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 5 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_2^{19}.A_{20}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^9.C_2^6.C_2^6.C_2^6.C_2^5.C_2^5$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4.C_3^4$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^4$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7^2$
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}$
13-Sylow subgroup: $P_{ 13 } \simeq$ $C_{13}$
17-Sylow subgroup: $P_{ 17 } \simeq$ $C_{17}$
19-Sylow subgroup: $P_{ 19 } \simeq$ $C_{19}$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

Every character has rational values, so the complex character table is the same as the rational character table below.

Rational character table

The $12484 \times 12484$ rational character table is not available for this group.