Properties

Label 12288.bck
Order \( 2^{12} \cdot 3 \)
Exponent \( 2^{2} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 4
$\card{\Aut(G)}$ \( 2^{18} \cdot 3^{2} \)
$\card{\mathrm{Out}(G)}$ \( 2^{8} \cdot 3 \)
Perm deg. $24$
Trans deg. $24$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,4)(2,3)(5,12,6,11)(7,10,8,9)(13,21)(14,22)(15,24)(16,23), (1,15,5,17,11,24,2,16,6,18,12,23)(3,13,8,19,10,21,4,14,7,20,9,22) >;
 
Copy content gap:G := Group( (1,4)(2,3)(5,12,6,11)(7,10,8,9)(13,21)(14,22)(15,24)(16,23), (1,15,5,17,11,24,2,16,6,18,12,23)(3,13,8,19,10,21,4,14,7,20,9,22) );
 
Copy content sage:G = PermutationGroup(['(1,4)(2,3)(5,12,6,11)(7,10,8,9)(13,21)(14,22)(15,24)(16,23)', '(1,15,5,17,11,24,2,16,6,18,12,23)(3,13,8,19,10,21,4,14,7,20,9,22)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(587627783726257973919069720393642624739166019918732732915694520377937540371542551142906401700067795923765591946836369825990809053745334828020102491659643533194754388275397707245318207274013931838295095332736784883073315862741059232000,12288)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.8; g = G.9; h = G.10; i = G.11; j = G.12; k = G.13;
 

Group information

Description:$C_2^7.\GL(2,\mathbb{Z}/4)$
Order: \(12288\)\(\medspace = 2^{12} \cdot 3 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^8.A_4.C_6.C_2^6.C_2$, of order \(2359296\)\(\medspace = 2^{18} \cdot 3^{2} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 12, $C_3$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 12
Elements 1 1215 512 6976 1536 2048 12288
Conjugacy classes   1 125 1 74 3 4 208
Divisions 1 125 1 52 3 1 183
Autjugacy classes 1 28 1 8 3 1 42

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 3 4 6 12
Irr. complex chars.   8 10 24 0 110 56 208
Irr. rational chars. 4 6 12 3 88 70 183

Minimal presentations

Permutation degree:$24$
Transitive degree:$24$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible none none none
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k \mid c^{6}=d^{2}=e^{2}=f^{2}=g^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([13, -2, -2, -2, -2, -3, -2, 2, 2, 2, 2, 2, 2, 2, 26, 158302, 155222, 19437, 964, 349859, 91328, 88533, 146, 428484, 395217, 124570, 797477, 290178, 72116, 36327, 349446, 482683, 121803, 60391, 499207, 57428, 249633, 11902, 7235, 482984, 654285, 84274, 157997, 81843, 112329, 205942, 28115, 64008, 25801, 1290442, 367247, 408444, 64399, 45965, 1550027, 535416, 267733, 193802, 66987, 2003676, 482689, 371162, 250509, 60397]); a,b,c,d,e,f,g,h,i,j,k := Explode([G.1, G.3, G.4, G.6, G.7, G.8, G.9, G.10, G.11, G.12, G.13]); AssignNames(~G, ["a", "a2", "b", "c", "c2", "d", "e", "f", "g", "h", "i", "j", "k"]);
 
Copy content gap:G := PcGroupCode(587627783726257973919069720393642624739166019918732732915694520377937540371542551142906401700067795923765591946836369825990809053745334828020102491659643533194754388275397707245318207274013931838295095332736784883073315862741059232000,12288); a := G.1; b := G.3; c := G.4; d := G.6; e := G.7; f := G.8; g := G.9; h := G.10; i := G.11; j := G.12; k := G.13;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(587627783726257973919069720393642624739166019918732732915694520377937540371542551142906401700067795923765591946836369825990809053745334828020102491659643533194754388275397707245318207274013931838295095332736784883073315862741059232000,12288)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.8; g = G.9; h = G.10; i = G.11; j = G.12; k = G.13;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(587627783726257973919069720393642624739166019918732732915694520377937540371542551142906401700067795923765591946836369825990809053745334828020102491659643533194754388275397707245318207274013931838295095332736784883073315862741059232000,12288)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.8; g = G.9; h = G.10; i = G.11; j = G.12; k = G.13;
 
Permutation group:Degree $24$ $\langle(1,4)(2,3)(5,12,6,11)(7,10,8,9)(13,21)(14,22)(15,24)(16,23), (1,15,5,17,11,24,2,16,6,18,12,23)(3,13,8,19,10,21,4,14,7,20,9,22)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,4)(2,3)(5,12,6,11)(7,10,8,9)(13,21)(14,22)(15,24)(16,23), (1,15,5,17,11,24,2,16,6,18,12,23)(3,13,8,19,10,21,4,14,7,20,9,22) >;
 
Copy content gap:G := Group( (1,4)(2,3)(5,12,6,11)(7,10,8,9)(13,21)(14,22)(15,24)(16,23), (1,15,5,17,11,24,2,16,6,18,12,23)(3,13,8,19,10,21,4,14,7,20,9,22) );
 
Copy content sage:G = PermutationGroup(['(1,4)(2,3)(5,12,6,11)(7,10,8,9)(13,21)(14,22)(15,24)(16,23)', '(1,15,5,17,11,24,2,16,6,18,12,23)(3,13,8,19,10,21,4,14,7,20,9,22)'])
 
Transitive group: 24T11643 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^{10}$ . $D_6$ $C_2^9$ . $D_{12}$ $(C_2^8.S_4)$ . $C_2$ $(C_2^8.S_4)$ . $C_2$ all 40

Elements of the group are displayed as permutations of degree 24.

Homology

Abelianization: $C_{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{8}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 91 normal subgroups (26 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2^2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to 1536.408544623
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2^6$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^9.C_2^3$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 8 larger groups in the database.

This group is a maximal quotient of 4 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $208 \times 208$ character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $183 \times 183$ rational character table (warning: may be slow to load).