Properties

Label 1181250000.a
Order \( 2^{4} \cdot 3^{3} \cdot 5^{8} \cdot 7 \)
Exponent \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2 \cdot 3 \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{5} \cdot 3^{3} \cdot 5^{8} \cdot 7 \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $45$
Trans deg. $45$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 45 | (1,31,21,40,17,8,13,45,27)(2,32,22,36,18,9,14,41,28)(3,33,23,37,19,10,15,42,29)(4,34,24,38,20,6,11,43,30)(5,35,25,39,16,7,12,44,26), (1,10,22,28,34,36,45,4,7,25,30,32,38,43)(2,9,23,27,35,40,41,3,8,24,26,31,39,42)(5,6,21,29,33,37,44)(11,12)(13,15)(16,19)(17,18) >;
 
Copy content gap:G := Group( (1,31,21,40,17,8,13,45,27)(2,32,22,36,18,9,14,41,28)(3,33,23,37,19,10,15,42,29)(4,34,24,38,20,6,11,43,30)(5,35,25,39,16,7,12,44,26), (1,10,22,28,34,36,45,4,7,25,30,32,38,43)(2,9,23,27,35,40,41,3,8,24,26,31,39,42)(5,6,21,29,33,37,44)(11,12)(13,15)(16,19)(17,18) );
 
Copy content sage:G = PermutationGroup(['(1,31,21,40,17,8,13,45,27)(2,32,22,36,18,9,14,41,28)(3,33,23,37,19,10,15,42,29)(4,34,24,38,20,6,11,43,30)(5,35,25,39,16,7,12,44,26)', '(1,10,22,28,34,36,45,4,7,25,30,32,38,43)(2,9,23,27,35,40,41,3,8,24,26,31,39,42)(5,6,21,29,33,37,44)(11,12)(13,15)(16,19)(17,18)'])
 

Group information

Description:$C_5^8.\SL(2,8).C_6$
Order: \(1181250000\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5^{8} \cdot 7 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(630\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(2362500000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{8} \cdot 7 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$, $C_3$, $C_5$ x 8, $\SL(2,8)$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$1$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and nonsolvable.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 5 6 7 9 10 14 15 18 30 35
Elements 1 469375 980000 390624 103250000 3375000 196875000 49140000 84375000 86520000 196875000 378000000 81000000 1181250000
Conjugacy classes   1 3 3 200 7 1 3 80 1 140 3 48 12 502
Divisions 1 3 2 100 4 1 2 40 1 36 2 12 4 208
Autjugacy classes 1 3 3 100 7 1 3 40 1 70 3 24 6 262

Minimal presentations

Permutation degree:$45$
Transitive degree:$45$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 18 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $45$ $\langle(1,31,21,40,17,8,13,45,27)(2,32,22,36,18,9,14,41,28)(3,33,23,37,19,10,15,42,29) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 45 | (1,31,21,40,17,8,13,45,27)(2,32,22,36,18,9,14,41,28)(3,33,23,37,19,10,15,42,29)(4,34,24,38,20,6,11,43,30)(5,35,25,39,16,7,12,44,26), (1,10,22,28,34,36,45,4,7,25,30,32,38,43)(2,9,23,27,35,40,41,3,8,24,26,31,39,42)(5,6,21,29,33,37,44)(11,12)(13,15)(16,19)(17,18) >;
 
Copy content gap:G := Group( (1,31,21,40,17,8,13,45,27)(2,32,22,36,18,9,14,41,28)(3,33,23,37,19,10,15,42,29)(4,34,24,38,20,6,11,43,30)(5,35,25,39,16,7,12,44,26), (1,10,22,28,34,36,45,4,7,25,30,32,38,43)(2,9,23,27,35,40,41,3,8,24,26,31,39,42)(5,6,21,29,33,37,44)(11,12)(13,15)(16,19)(17,18) );
 
Copy content sage:G = PermutationGroup(['(1,31,21,40,17,8,13,45,27)(2,32,22,36,18,9,14,41,28)(3,33,23,37,19,10,15,42,29)(4,34,24,38,20,6,11,43,30)(5,35,25,39,16,7,12,44,26)', '(1,10,22,28,34,36,45,4,7,25,30,32,38,43)(2,9,23,27,35,40,41,3,8,24,26,31,39,42)(5,6,21,29,33,37,44)(11,12)(13,15)(16,19)(17,18)'])
 
Transitive group: 45T5159 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_5^8.\SL(2,8))$ . $C_6$ $(C_5^8.C_2)$ . ${}^2G(2,3)$ $(C_5^8.\SL(2,8).C_3)$ . $C_2$ $(C_5^8.C_2.\SL(2,8))$ . $C_3$ more information

Elements of the group are displayed as permutations of degree 45.

Homology

Abelianization: $C_{6} \simeq C_{2} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 7 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_5^8.\SL(2,8)$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_9:C_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^8$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $502 \times 502$ character table is not available for this group.

Rational character table

The $208 \times 208$ rational character table is not available for this group.