Properties

Label 1152.134251
Order \( 2^{7} \cdot 3^{2} \)
Exponent \( 2^{2} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{5} \cdot 3 \)
$\card{Z(G)}$ \( 2^{3} \cdot 3 \)
$\card{\Aut(G)}$ \( 2^{17} \cdot 3^{2} \)
$\card{\mathrm{Out}(G)}$ \( 2^{13} \cdot 3 \)
Trans deg. not computed
Rank not computed

Learn more

This group is not stored in the database. However, basic information about the group, computed on the fly, is listed below.

Group information

Description:$C_3^2 \rtimes (C_2^4:D_4)$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism group:Group of order 1179648
Derived length:$2$

This group is nonabelian, supersolvable (hence solvable and monomial), and metabelian. Whether it is metacyclic, monomial, or rational has not been computed.

Group statistics

Order 1 2 3 4 6 12
Elements 1 159 8 96 552 336 1152
Conjugacy classes   1 43 5 12 149 42 252
Divisions data not computed
Autjugacy classes data not computed

Dimension 1 2 4
Irr. complex chars.   96 120 36 252

Constructions

Presentation: ${\langle a, b, c, d, e, f, g, h, i \mid a^{2}=b^{2}=c^{2}=d^{2}=e^{2}=f^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Aut. group: $\Aut(C_{12}:C_{28})$ $\Aut(C_{12}:C_{28})$ $\Aut(C_{42}.D_4)$ $\Aut(D_6\times C_{28})$ all 12

Homology

Abelianization: $C_{2}^{4} \times C_{6} \simeq C_{2}^{5} \times C_{3}$

Subgroups

Center: $Z \simeq$ $C_2^2\times C_6$ $G/Z \simeq$ $C_2^2\times D_6$
Commutator: $G' \simeq$ $C_2\times C_6$ $G/G' \simeq$ $C_2^4\times C_6$
Frattini: $\Phi \simeq$ $C_2^2$ $G/\Phi \simeq$ $C_6^2:C_2^3$
Fitting: $\operatorname{Fit} \simeq$ $C_2^4:C_6^2$ $G/\operatorname{Fit} \simeq$ $C_2$
Radical: $R \simeq$ $C_3^2 \rtimes (C_2^4:D_4)$ $G/R \simeq$ $C_1$
Socle: $S \simeq$ $C_2\times C_6^2$ $G/S \simeq$ $C_2^4$
2-Sylow subgroup: $P_{2} \simeq$ $C_2^4:D_4$
3-Sylow subgroup: $P_{3} \simeq$ $C_3^2$
Maximal subgroups: $M_{2,1} \simeq$ $C_6^2.C_2^4$ $G/M_{2,1} \simeq$ $C_2$ 3 normal subgroups
$M_{2,2} \simeq$ $C_6^2.C_2^4$ $G/M_{2,2} \simeq$ $C_2$ 3 normal subgroups
$M_{2,3} \simeq$ $C_6^2.C_2^4$ $G/M_{2,3} \simeq$ $C_2$ 16 normal subgroups
$M_{2,4} \simeq$ $C_6^2.C_2^4$ $G/M_{2,4} \simeq$ $C_2$ 3 normal subgroups
$M_{2,5} \simeq$ $C_6^2.C_2^4$ $G/M_{2,5} \simeq$ $C_2$
$M_{2,6} \simeq$ $C_2^4:C_6^2$ $G/M_{2,6} \simeq$ $C_2$
$M_{2,7} \simeq$ $C_6^2:C_2^4$ $G/M_{2,7} \simeq$ $C_2$ 3 normal subgroups
$M_{2,8} \simeq$ $C_6^2:C_2^4$ $G/M_{2,8} \simeq$ $C_2$
$M_{3,1} \simeq$ $C_2^5:D_6$ $G/M_{3,1} \simeq$ $C_3$
$M_{3,2} \simeq$ $C_2^6:C_6$ 3 subgroups in one conjugacy class
Maximal quotients: $m_{2,1} \simeq$ $C_2$ $G/m_{2,1} \simeq$ $C_6^2.C_2^4$ 4 normal subgroups
$m_{2,2} \simeq$ $C_2$ $G/m_{2,2} \simeq$ $C_6^2:C_2^4$ 3 normal subgroups
$m_{3,1} \simeq$ $C_3$ $G/m_{3,1} \simeq$ $C_2^5:D_6$
$m_{3,2} \simeq$ $C_3$ $G/m_{3,2} \simeq$ $C_2^6:C_6$