Properties

Label 113799168.e
Order \( 2^{12} \cdot 3^{4} \cdot 7^{3} \)
Exponent \( 2^{2} \cdot 3^{2} \cdot 7 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2 \cdot 3 \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{12} \cdot 3^{4} \cdot 7^{3} \)
$\card{\mathrm{Out}(G)}$ \( 1 \)
Perm deg. $28$
Trans deg. $42$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 28 | (2,4,5,8)(6,9,13,17,22,10,14,19,18,20,12,16)(7,11,15)(21,24,23)(25,26,27,28), (1,2,3,5,7,10)(4,6)(8,12,13,14,18,22)(9,11)(15,20,24,19,23,17)(16,21)(25,26) >;
 
Copy content gap:G := Group( (2,4,5,8)(6,9,13,17,22,10,14,19,18,20,12,16)(7,11,15)(21,24,23)(25,26,27,28), (1,2,3,5,7,10)(4,6)(8,12,13,14,18,22)(9,11)(15,20,24,19,23,17)(16,21)(25,26) );
 
Copy content sage:G = PermutationGroup(['(2,4,5,8)(6,9,13,17,22,10,14,19,18,20,12,16)(7,11,15)(21,24,23)(25,26,27,28)', '(1,2,3,5,7,10)(4,6)(8,12,13,14,18,22)(9,11)(15,20,24,19,23,17)(16,21)(25,26)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(191960992035806677371402723763814800052203922896587444021585206795603599672564720345061225892583258974818773474360810991574563901812901389530858966218387831191471237867900460506240435799626006327969095370433128326595102989749568251762493256421405702355898154241220075253537713872831523338439922302710244872333274730123241172816708545813986622614763091915462610786068493089523207691823129592016707505606065625978551505498783481868288593098017299447615892240547600699857737822012407489112660128747072323768101745450452385146908843139446989823836741577209929348286927932811009879397482301580459937290210121254169610604026425958850482368047021938421497420796187661064641891227391392075634456508342551767436833771061071975031552451390825203333055621060036877126960766175604973157966203164802760297803993978681843527387812417198133277422874693099090919277398344726397325765819547697588052027837974121937682657199696829391675183013374732162434772762757285988236043489968153067433996623807832483211399154880234068496385766814448948433583802078933289693206500215959414689468774826777741927818877207578701805930149512855936,113799168)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19;
 

Group information

Description:$C_2^9.C_7^3:(C_3^3:S_4)$
Order: \(113799168\)\(\medspace = 2^{12} \cdot 3^{4} \cdot 7^{3} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^9.C_7^3:(C_3^3:S_4)$, of order \(113799168\)\(\medspace = 2^{12} \cdot 3^{4} \cdot 7^{3} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 12, $C_3$ x 4, $C_7$ x 3
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 7 9 12 14 18 21 28 42 84
Elements 1 10111 410984 120960 15191960 117648 12644352 22014720 3340656 12644352 11692800 3435264 18627840 13547520 113799168
Conjugacy classes   1 11 10 6 180 9 2 48 51 2 18 14 172 20 544
Divisions 1 11 6 6 94 5 1 24 27 1 6 7 46 5 240
Autjugacy classes 1 11 10 6 180 9 2 48 51 2 18 14 172 20 544

Minimal presentations

Permutation degree:$28$
Transitive degree:$42$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 21 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m \mid a^{6}=c^{6}=d^{42}=e^{14}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([19, 2, 3, 3, 2, 3, 2, 3, 7, 2, 7, 2, 7, 2, 2, 2, 2, 2, 2, 2, 38, 4675568870, 1988278410, 480026452, 3548890227, 2300424034, 828741509, 212, 258555424, 328362773, 186178572, 4097415137, 1679781588, 613010761, 545685002, 12907503, 328, 4648046766, 409862401, 1639110398, 660961119, 15655246, 519, 5220295, 98522, 732449133, 11008, 11027, 1846061288, 2550744783, 66965014, 8833925, 50762460, 18378841, 736277, 2825061, 502, 48263049, 214598188, 8043887, 191586, 191605, 63944, 16083, 23328026578, 11596703609, 1534083456, 471536671, 76500356, 188700771, 7557982, 30866, 1395864, 667309, 618, 6592041803, 10193154078, 405458833, 3217604, 3217623, 218256298, 109396349, 2643004740, 1431300811, 1189482890, 159033489, 73416886, 24472373, 13216602, 351132, 1900357213, 5384345432, 2542255683, 578553262, 302414957, 97520496, 51458359, 743084, 1746721, 13218, 8234881214, 12669048033, 1508272, 281534471, 112613850, 225227629, 131382848, 80004, 199723, 9063798927, 13518477538, 1600724213, 300839688, 127897147, 240332174, 156452817, 3753940, 102349, 221536, 861495280, 574330211, 576039546, 63814537, 159536252, 308436687, 132946930, 506670, 262501, 7308230849, 7074758412, 1849681063, 794530370, 126992217, 133829500, 21819047, 15032076, 2346289, 117494, 8516616714, 14528683297, 2221809212, 1409247327, 989911912, 283908563, 17087706, 31716528, 4740822, 3520300, 182152, 131631]); a,b,c,d,e,f,g,h,i,j,k,l,m := Explode([G.1, G.3, G.4, G.6, G.9, G.11, G.13, G.14, G.15, G.16, G.17, G.18, G.19]); AssignNames(~G, ["a", "a2", "b", "c", "c2", "d", "d2", "d6", "e", "e2", "f", "f2", "g", "h", "i", "j", "k", "l", "m"]);
 
Copy content gap:G := PcGroupCode(191960992035806677371402723763814800052203922896587444021585206795603599672564720345061225892583258974818773474360810991574563901812901389530858966218387831191471237867900460506240435799626006327969095370433128326595102989749568251762493256421405702355898154241220075253537713872831523338439922302710244872333274730123241172816708545813986622614763091915462610786068493089523207691823129592016707505606065625978551505498783481868288593098017299447615892240547600699857737822012407489112660128747072323768101745450452385146908843139446989823836741577209929348286927932811009879397482301580459937290210121254169610604026425958850482368047021938421497420796187661064641891227391392075634456508342551767436833771061071975031552451390825203333055621060036877126960766175604973157966203164802760297803993978681843527387812417198133277422874693099090919277398344726397325765819547697588052027837974121937682657199696829391675183013374732162434772762757285988236043489968153067433996623807832483211399154880234068496385766814448948433583802078933289693206500215959414689468774826777741927818877207578701805930149512855936,113799168); a := G.1; b := G.3; c := G.4; d := G.6; e := G.9; f := G.11; g := G.13; h := G.14; i := G.15; j := G.16; k := G.17; l := G.18; m := G.19;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(191960992035806677371402723763814800052203922896587444021585206795603599672564720345061225892583258974818773474360810991574563901812901389530858966218387831191471237867900460506240435799626006327969095370433128326595102989749568251762493256421405702355898154241220075253537713872831523338439922302710244872333274730123241172816708545813986622614763091915462610786068493089523207691823129592016707505606065625978551505498783481868288593098017299447615892240547600699857737822012407489112660128747072323768101745450452385146908843139446989823836741577209929348286927932811009879397482301580459937290210121254169610604026425958850482368047021938421497420796187661064641891227391392075634456508342551767436833771061071975031552451390825203333055621060036877126960766175604973157966203164802760297803993978681843527387812417198133277422874693099090919277398344726397325765819547697588052027837974121937682657199696829391675183013374732162434772762757285988236043489968153067433996623807832483211399154880234068496385766814448948433583802078933289693206500215959414689468774826777741927818877207578701805930149512855936,113799168)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(191960992035806677371402723763814800052203922896587444021585206795603599672564720345061225892583258974818773474360810991574563901812901389530858966218387831191471237867900460506240435799626006327969095370433128326595102989749568251762493256421405702355898154241220075253537713872831523338439922302710244872333274730123241172816708545813986622614763091915462610786068493089523207691823129592016707505606065625978551505498783481868288593098017299447615892240547600699857737822012407489112660128747072323768101745450452385146908843139446989823836741577209929348286927932811009879397482301580459937290210121254169610604026425958850482368047021938421497420796187661064641891227391392075634456508342551767436833771061071975031552451390825203333055621060036877126960766175604973157966203164802760297803993978681843527387812417198133277422874693099090919277398344726397325765819547697588052027837974121937682657199696829391675183013374732162434772762757285988236043489968153067433996623807832483211399154880234068496385766814448948433583802078933289693206500215959414689468774826777741927818877207578701805930149512855936,113799168)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19;
 
Permutation group:Degree $28$ $\langle(2,4,5,8)(6,9,13,17,22,10,14,19,18,20,12,16)(7,11,15)(21,24,23)(25,26,27,28) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 28 | (2,4,5,8)(6,9,13,17,22,10,14,19,18,20,12,16)(7,11,15)(21,24,23)(25,26,27,28), (1,2,3,5,7,10)(4,6)(8,12,13,14,18,22)(9,11)(15,20,24,19,23,17)(16,21)(25,26) >;
 
Copy content gap:G := Group( (2,4,5,8)(6,9,13,17,22,10,14,19,18,20,12,16)(7,11,15)(21,24,23)(25,26,27,28), (1,2,3,5,7,10)(4,6)(8,12,13,14,18,22)(9,11)(15,20,24,19,23,17)(16,21)(25,26) );
 
Copy content sage:G = PermutationGroup(['(2,4,5,8)(6,9,13,17,22,10,14,19,18,20,12,16)(7,11,15)(21,24,23)(25,26,27,28)', '(1,2,3,5,7,10)(4,6)(8,12,13,14,18,22)(9,11)(15,20,24,19,23,17)(16,21)(25,26)'])
 
Transitive group: 42T3777 42T3778 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_2^9.C_7^3.C_3^3)$ . $S_4$ $C_2^{11}$ . $(C_7^3:C_3\wr S_3)$ $(C_2^9.C_7^3)$ . $(C_3^3:S_4)$ $C_2^9$ . $(C_7^3:(C_3^3:S_4))$ all 14
Aut. group: $\Aut(C_2^9.C_7^3:C_3^2:S_4)$

Elements of the group are displayed as permutations of degree 28.

Homology

Abelianization: $C_{6} \simeq C_{2} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 16 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_2^9.(C_7\times C_{14}^2):\He_3$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $544 \times 544$ character table is not available for this group.

Rational character table

The $240 \times 240$ rational character table is not available for this group.