| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m \mid a^{6}=c^{6}=d^{42}=e^{14}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([19, 2, 3, 3, 2, 3, 2, 3, 7, 2, 7, 2, 7, 2, 2, 2, 2, 2, 2, 2, 38, 4675568870, 1988278410, 480026452, 3548890227, 2300424034, 828741509, 212, 258555424, 328362773, 186178572, 4097415137, 1679781588, 613010761, 545685002, 12907503, 328, 4648046766, 409862401, 1639110398, 660961119, 15655246, 519, 5220295, 98522, 732449133, 11008, 11027, 1846061288, 2550744783, 66965014, 8833925, 50762460, 18378841, 736277, 2825061, 502, 48263049, 214598188, 8043887, 191586, 191605, 63944, 16083, 23328026578, 11596703609, 1534083456, 471536671, 76500356, 188700771, 7557982, 30866, 1395864, 667309, 618, 6592041803, 10193154078, 405458833, 3217604, 3217623, 218256298, 109396349, 2643004740, 1431300811, 1189482890, 159033489, 73416886, 24472373, 13216602, 351132, 1900357213, 5384345432, 2542255683, 578553262, 302414957, 97520496, 51458359, 743084, 1746721, 13218, 8234881214, 12669048033, 1508272, 281534471, 112613850, 225227629, 131382848, 80004, 199723, 9063798927, 13518477538, 1600724213, 300839688, 127897147, 240332174, 156452817, 3753940, 102349, 221536, 861495280, 574330211, 576039546, 63814537, 159536252, 308436687, 132946930, 506670, 262501, 7308230849, 7074758412, 1849681063, 794530370, 126992217, 133829500, 21819047, 15032076, 2346289, 117494, 8516616714, 14528683297, 2221809212, 1409247327, 989911912, 283908563, 17087706, 31716528, 4740822, 3520300, 182152, 131631]); a,b,c,d,e,f,g,h,i,j,k,l,m := Explode([G.1, G.3, G.4, G.6, G.9, G.11, G.13, G.14, G.15, G.16, G.17, G.18, G.19]); AssignNames(~G, ["a", "a2", "b", "c", "c2", "d", "d2", "d6", "e", "e2", "f", "f2", "g", "h", "i", "j", "k", "l", "m"]);
gap:G := PcGroupCode(191960992035806677371402723763814800052203922896587444021585206795603599672564720345061225892583258974818773474360810991574563901812901389530858966218387831191471237867900460506240435799626006327969095370433128326595102989749568251762493256421405702355898154241220075253537713872831523338439922302710244872333274730123241172816708545813986622614763091915462610786068493089523207691823129592016707505606065625978551505498783481868288593098017299447615892240547600699857737822012407489112660128747072323768101745450452385146908843139446989823836741577209929348286927932811009879397482301580459937290210121254169610604026425958850482368047021938421497420796187661064641891227391392075634456508342551767436833771061071975031552451390825203333055621060036877126960766175604973157966203164802760297803993978681843527387812417198133277422874693099090919277398344726397325765819547697588052027837974121937682657199696829391675183013374732162434772762757285988236043489968153067433996623807832483211399154880234068496385766814448948433583802078933289693206500215959414689468774826777741927818877207578701805930149512855936,113799168); a := G.1; b := G.3; c := G.4; d := G.6; e := G.9; f := G.11; g := G.13; h := G.14; i := G.15; j := G.16; k := G.17; l := G.18; m := G.19;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(191960992035806677371402723763814800052203922896587444021585206795603599672564720345061225892583258974818773474360810991574563901812901389530858966218387831191471237867900460506240435799626006327969095370433128326595102989749568251762493256421405702355898154241220075253537713872831523338439922302710244872333274730123241172816708545813986622614763091915462610786068493089523207691823129592016707505606065625978551505498783481868288593098017299447615892240547600699857737822012407489112660128747072323768101745450452385146908843139446989823836741577209929348286927932811009879397482301580459937290210121254169610604026425958850482368047021938421497420796187661064641891227391392075634456508342551767436833771061071975031552451390825203333055621060036877126960766175604973157966203164802760297803993978681843527387812417198133277422874693099090919277398344726397325765819547697588052027837974121937682657199696829391675183013374732162434772762757285988236043489968153067433996623807832483211399154880234068496385766814448948433583802078933289693206500215959414689468774826777741927818877207578701805930149512855936,113799168)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(191960992035806677371402723763814800052203922896587444021585206795603599672564720345061225892583258974818773474360810991574563901812901389530858966218387831191471237867900460506240435799626006327969095370433128326595102989749568251762493256421405702355898154241220075253537713872831523338439922302710244872333274730123241172816708545813986622614763091915462610786068493089523207691823129592016707505606065625978551505498783481868288593098017299447615892240547600699857737822012407489112660128747072323768101745450452385146908843139446989823836741577209929348286927932811009879397482301580459937290210121254169610604026425958850482368047021938421497420796187661064641891227391392075634456508342551767436833771061071975031552451390825203333055621060036877126960766175604973157966203164802760297803993978681843527387812417198133277422874693099090919277398344726397325765819547697588052027837974121937682657199696829391675183013374732162434772762757285988236043489968153067433996623807832483211399154880234068496385766814448948433583802078933289693206500215959414689468774826777741927818877207578701805930149512855936,113799168)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19;
|
| Permutation group: | Degree $28$
$\langle(2,4,5,8)(6,9,13,17,22,10,14,19,18,20,12,16)(7,11,15)(21,24,23)(25,26,27,28) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 28 | (2,4,5,8)(6,9,13,17,22,10,14,19,18,20,12,16)(7,11,15)(21,24,23)(25,26,27,28), (1,2,3,5,7,10)(4,6)(8,12,13,14,18,22)(9,11)(15,20,24,19,23,17)(16,21)(25,26) >;
gap:G := Group( (2,4,5,8)(6,9,13,17,22,10,14,19,18,20,12,16)(7,11,15)(21,24,23)(25,26,27,28), (1,2,3,5,7,10)(4,6)(8,12,13,14,18,22)(9,11)(15,20,24,19,23,17)(16,21)(25,26) );
sage:G = PermutationGroup(['(2,4,5,8)(6,9,13,17,22,10,14,19,18,20,12,16)(7,11,15)(21,24,23)(25,26,27,28)', '(1,2,3,5,7,10)(4,6)(8,12,13,14,18,22)(9,11)(15,20,24,19,23,17)(16,21)(25,26)'])
|
| Transitive group: |
42T3777 |
42T3778 |
|
|
more information |
| Direct product: |
not computed |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$(C_2^9.C_7^3.C_3^3)$ . $S_4$ |
$C_2^{11}$ . $(C_7^3:C_3\wr S_3)$ |
$(C_2^9.C_7^3)$ . $(C_3^3:S_4)$ |
$C_2^9$ . $(C_7^3:(C_3^3:S_4))$ |
all 14 |
| Aut. group: |
$\Aut(C_2^9.C_7^3:C_3^2:S_4)$ |
|
|
|
Elements of the group are displayed as permutations of degree 28.
The $544 \times 544$ character table is not available for this group.
The $240 \times 240$ rational character table is not available for this group.