Properties

Label 11019960576.bb
Order \( 2^{8} \cdot 3^{16} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{5} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{11} \cdot 3^{17} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \cdot 3 \)
Perm deg. $36$
Trans deg. $36$
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,34)(2,36)(3,35)(4,32,30,19)(5,33,28,20)(6,31,29,21)(7,18,9,17,8,16)(10,14,11,13,12,15)(22,26,24,27,23,25), (1,22,26,12,15,35)(2,24,25,10,13,34,3,23,27,11,14,36)(4,32)(5,33,6,31)(7,29,21,17,9,30,19,16,8,28,20,18), (1,6,3,5)(2,4)(7,10,8,12)(9,11)(13,17,27,29)(14,18,26,28)(15,16,25,30)(19,23,32,35)(20,22,31,36)(21,24,33,34), (1,8,15,33)(2,9,14,32)(3,7,13,31)(4,22,16,35,29,10,6,23,17,34,28,11)(5,24,18,36,30,12)(19,25,21,26)(20,27) >;
 
Copy content gap:G := Group( (1,34)(2,36)(3,35)(4,32,30,19)(5,33,28,20)(6,31,29,21)(7,18,9,17,8,16)(10,14,11,13,12,15)(22,26,24,27,23,25), (1,22,26,12,15,35)(2,24,25,10,13,34,3,23,27,11,14,36)(4,32)(5,33,6,31)(7,29,21,17,9,30,19,16,8,28,20,18), (1,6,3,5)(2,4)(7,10,8,12)(9,11)(13,17,27,29)(14,18,26,28)(15,16,25,30)(19,23,32,35)(20,22,31,36)(21,24,33,34), (1,8,15,33)(2,9,14,32)(3,7,13,31)(4,22,16,35,29,10,6,23,17,34,28,11)(5,24,18,36,30,12)(19,25,21,26)(20,27) );
 
Copy content sage:G = PermutationGroup(['(1,34)(2,36)(3,35)(4,32,30,19)(5,33,28,20)(6,31,29,21)(7,18,9,17,8,16)(10,14,11,13,12,15)(22,26,24,27,23,25)', '(1,22,26,12,15,35)(2,24,25,10,13,34,3,23,27,11,14,36)(4,32)(5,33,6,31)(7,29,21,17,9,30,19,16,8,28,20,18)', '(1,6,3,5)(2,4)(7,10,8,12)(9,11)(13,17,27,29)(14,18,26,28)(15,16,25,30)(19,23,32,35)(20,22,31,36)(21,24,33,34)', '(1,8,15,33)(2,9,14,32)(3,7,13,31)(4,22,16,35,29,10,6,23,17,34,28,11)(5,24,18,36,30,12)(19,25,21,26)(20,27)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2991487898852652557237589253277463639004218549259010944323235108226220487367229561823903744345956367516172467076325722051240482291479394418759780379428963234362903639506286155465674522826533508250320851606862340093689023620689736464024693664063516581621663440099342735682205053367765003796730695077639471723329876976571027393383220265861078548381909949189833868626260996760141685473628247974128276769398310430036218543448104064957637043014704258473095411709947991359011538757213159599644662290034652879263177720269514248872638258409047878015931126848955267393875088063645020501427641930132300183889839568737231847157818509086096267914494667291813396813363300852623583644514075455106313435337752553471102996170977833481540680872854162697999321079696965331584503206406449203895550221068183767887260004058562644479817692187601279034318366048873295418478486266482551335319723039548986111077786385114469642854638879842593125498152488672191002121877496169098740280701118871640325111588935525736436147578139957761568209510238228444327726554485802860235966289688467343446871620234930634509691505822647471191206513492548098639634972978273929147082028681145527129643630084361501454506900167120518515380888540809508993508269051807462421965665230869274043530947530104025985939935808414173160504944460166855142128018226952160030569699118374554807686915763358850616650713362220218032034182933136545293814616657823662593771117929913206482522870889796513576860262934388569284554104790697438479874325619733530333651771389556440960234116074970331806805578742113191794634181936739531002365134776903123008614920991373546798341877445049361715426751339710887511382622502950734854838786196477039334087997174010144475230948633098633890721735764524352086428204308303575627311441551026066165101813333745353970443295839708440435239833977251804008281322615026938107127222419845527990493972574276896274493528673831919311046524620194246104026856102221952972179252132749982677310752264334885166103549450292933533723696793155860197614739501197913394294725358685069254182027593679801927535536300269760669205713530305192541533553210252569126956395137899747799950624812219989033592054689370137361086297301206047496697178361993581605404251189395315120921588883455,11019960576)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.22; p = G.23; q = G.24;
 

Group information

Description:$C_3^8.C_3^8:(C_2^5.D_4)$
Order: \(11019960576\)\(\medspace = 2^{8} \cdot 3^{16} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(264479053824\)\(\medspace = 2^{11} \cdot 3^{17} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 8, $C_3$ x 16
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18 36
Elements 1 5238351 4100624 471447216 1924423920 38946096 5880335616 1471028688 1224440064 11019960576
Conjugacy classes   1 29 712 22 4464 540 356 1136 40 7300
Divisions 1 29 712 14 4464 538 208 1133 20 7119
Autjugacy classes 1 19 171 5 976 130 29 250 3 1584

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q \mid c^{6}=e^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([24, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 48, 179415369241, 789416336738, 223678368458, 194, 1038463531779, 444157944219, 109595897931, 40437160324, 57180423388, 277978770772, 91769657596, 340, 1567393823237, 104427330077, 375011320373, 66295564493, 1238779827270, 66419240862, 200210295318, 90227122350, 23093115798, 45624479670, 486, 826628087815, 857369696287, 73563145783, 62789336143, 18169728871, 44170542847, 2479, 931506708104, 78819091232, 449991987896, 131028726032, 59427092552, 51630560048, 19224372968, 548931992, 632, 65303470089, 276513, 465455185977, 34665, 703881856138, 1237408786978, 176335850650, 355898378962, 85953035626, 30337252834, 9048901114, 10717667314, 3861179194, 778, 2429833264139, 1534066366499, 139338123323, 59103364691, 64202678891, 66145020035, 27744187547, 11107003571, 1980295115, 306110291, 1219493713164, 1704958474788, 736087412796, 351683579604, 141105549420, 38468027652, 30507347676, 12032508564, 10322412, 678504780, 6319212, 1582847336461, 1306974541861, 195840433213, 319656056917, 879185773, 47603396869, 26025830365, 113077, 19958605, 749393821, 185180965, 61727197, 3762096399374, 29997941798, 486759041342, 44663788886, 180889044590, 82777075334, 2778053918, 2881682126, 782635214, 15756398, 5252342, 3315775107087, 1518958116903, 986270736447, 6065584215, 7770581103, 13597424775, 13441695, 7347760311, 4999657167, 854390271, 219438999, 73073967, 45353415, 3974257432336, 115749430312, 1074124744768, 381323217112, 8313349360, 108066960136, 31227985600, 7809374776, 5311342576, 908120128, 449750512, 5387128, 48195328, 5355376, 3236061182993, 798879366185, 392416026689, 417909860441, 102485720561, 476171273, 21040741601, 16541281049, 559530065, 10464161, 477606089, 82616417, 25544489, 5672969, 946481, 3458013852690, 68931440682, 419077628994, 17232860250, 4739036658, 2154107658, 789839586, 23934738, 39891138, 18948450, 6316362, 3518996075539, 713302364203, 436345297987, 569572784731, 318163507315, 121275740299, 47180528803, 18965145787, 6817806931, 30387139, 5521243, 93079027, 59136811, 855715, 155899, 1102003, 357547, 6211, 1915, 580628, 68568643628, 925676688452, 8571080564, 238085780, 39681188, 93971902485, 1185997013037, 37912444485, 512074607709, 148157247861, 67344203661, 4505010213, 7112147541, 686341125, 311779005, 103926549, 3849501, 1283445, 813021, 47997, 4999820653846, 740144881198, 62568502342, 371827933150, 368847610102, 89541682126, 55466249638, 4200841630, 8217708118, 386812054, 684809278, 76055446, 8450950, 939382, 104806, 12118, 4704107249687, 2115832430639, 39182082119, 264479053943, 44079842471, 7346640599]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q := Explode([G.1, G.3, G.5, G.7, G.9, G.11, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.22, G.23, G.24]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "h", "i", "j", "k", "l", "m", "n", "n3", "o", "p", "q"]);
 
Copy content gap:G := PcGroupCode(2991487898852652557237589253277463639004218549259010944323235108226220487367229561823903744345956367516172467076325722051240482291479394418759780379428963234362903639506286155465674522826533508250320851606862340093689023620689736464024693664063516581621663440099342735682205053367765003796730695077639471723329876976571027393383220265861078548381909949189833868626260996760141685473628247974128276769398310430036218543448104064957637043014704258473095411709947991359011538757213159599644662290034652879263177720269514248872638258409047878015931126848955267393875088063645020501427641930132300183889839568737231847157818509086096267914494667291813396813363300852623583644514075455106313435337752553471102996170977833481540680872854162697999321079696965331584503206406449203895550221068183767887260004058562644479817692187601279034318366048873295418478486266482551335319723039548986111077786385114469642854638879842593125498152488672191002121877496169098740280701118871640325111588935525736436147578139957761568209510238228444327726554485802860235966289688467343446871620234930634509691505822647471191206513492548098639634972978273929147082028681145527129643630084361501454506900167120518515380888540809508993508269051807462421965665230869274043530947530104025985939935808414173160504944460166855142128018226952160030569699118374554807686915763358850616650713362220218032034182933136545293814616657823662593771117929913206482522870889796513576860262934388569284554104790697438479874325619733530333651771389556440960234116074970331806805578742113191794634181936739531002365134776903123008614920991373546798341877445049361715426751339710887511382622502950734854838786196477039334087997174010144475230948633098633890721735764524352086428204308303575627311441551026066165101813333745353970443295839708440435239833977251804008281322615026938107127222419845527990493972574276896274493528673831919311046524620194246104026856102221952972179252132749982677310752264334885166103549450292933533723696793155860197614739501197913394294725358685069254182027593679801927535536300269760669205713530305192541533553210252569126956395137899747799950624812219989033592054689370137361086297301206047496697178361993581605404251189395315120921588883455,11019960576); a := G.1; b := G.3; c := G.5; d := G.7; e := G.9; f := G.11; g := G.13; h := G.14; i := G.15; j := G.16; k := G.17; l := G.18; m := G.19; n := G.20; o := G.22; p := G.23; q := G.24;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2991487898852652557237589253277463639004218549259010944323235108226220487367229561823903744345956367516172467076325722051240482291479394418759780379428963234362903639506286155465674522826533508250320851606862340093689023620689736464024693664063516581621663440099342735682205053367765003796730695077639471723329876976571027393383220265861078548381909949189833868626260996760141685473628247974128276769398310430036218543448104064957637043014704258473095411709947991359011538757213159599644662290034652879263177720269514248872638258409047878015931126848955267393875088063645020501427641930132300183889839568737231847157818509086096267914494667291813396813363300852623583644514075455106313435337752553471102996170977833481540680872854162697999321079696965331584503206406449203895550221068183767887260004058562644479817692187601279034318366048873295418478486266482551335319723039548986111077786385114469642854638879842593125498152488672191002121877496169098740280701118871640325111588935525736436147578139957761568209510238228444327726554485802860235966289688467343446871620234930634509691505822647471191206513492548098639634972978273929147082028681145527129643630084361501454506900167120518515380888540809508993508269051807462421965665230869274043530947530104025985939935808414173160504944460166855142128018226952160030569699118374554807686915763358850616650713362220218032034182933136545293814616657823662593771117929913206482522870889796513576860262934388569284554104790697438479874325619733530333651771389556440960234116074970331806805578742113191794634181936739531002365134776903123008614920991373546798341877445049361715426751339710887511382622502950734854838786196477039334087997174010144475230948633098633890721735764524352086428204308303575627311441551026066165101813333745353970443295839708440435239833977251804008281322615026938107127222419845527990493972574276896274493528673831919311046524620194246104026856102221952972179252132749982677310752264334885166103549450292933533723696793155860197614739501197913394294725358685069254182027593679801927535536300269760669205713530305192541533553210252569126956395137899747799950624812219989033592054689370137361086297301206047496697178361993581605404251189395315120921588883455,11019960576)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.22; p = G.23; q = G.24;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2991487898852652557237589253277463639004218549259010944323235108226220487367229561823903744345956367516172467076325722051240482291479394418759780379428963234362903639506286155465674522826533508250320851606862340093689023620689736464024693664063516581621663440099342735682205053367765003796730695077639471723329876976571027393383220265861078548381909949189833868626260996760141685473628247974128276769398310430036218543448104064957637043014704258473095411709947991359011538757213159599644662290034652879263177720269514248872638258409047878015931126848955267393875088063645020501427641930132300183889839568737231847157818509086096267914494667291813396813363300852623583644514075455106313435337752553471102996170977833481540680872854162697999321079696965331584503206406449203895550221068183767887260004058562644479817692187601279034318366048873295418478486266482551335319723039548986111077786385114469642854638879842593125498152488672191002121877496169098740280701118871640325111588935525736436147578139957761568209510238228444327726554485802860235966289688467343446871620234930634509691505822647471191206513492548098639634972978273929147082028681145527129643630084361501454506900167120518515380888540809508993508269051807462421965665230869274043530947530104025985939935808414173160504944460166855142128018226952160030569699118374554807686915763358850616650713362220218032034182933136545293814616657823662593771117929913206482522870889796513576860262934388569284554104790697438479874325619733530333651771389556440960234116074970331806805578742113191794634181936739531002365134776903123008614920991373546798341877445049361715426751339710887511382622502950734854838786196477039334087997174010144475230948633098633890721735764524352086428204308303575627311441551026066165101813333745353970443295839708440435239833977251804008281322615026938107127222419845527990493972574276896274493528673831919311046524620194246104026856102221952972179252132749982677310752264334885166103549450292933533723696793155860197614739501197913394294725358685069254182027593679801927535536300269760669205713530305192541533553210252569126956395137899747799950624812219989033592054689370137361086297301206047496697178361993581605404251189395315120921588883455,11019960576)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.22; p = G.23; q = G.24;
 
Permutation group:Degree $36$ $\langle(1,34)(2,36)(3,35)(4,32,30,19)(5,33,28,20)(6,31,29,21)(7,18,9,17,8,16)(10,14,11,13,12,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,34)(2,36)(3,35)(4,32,30,19)(5,33,28,20)(6,31,29,21)(7,18,9,17,8,16)(10,14,11,13,12,15)(22,26,24,27,23,25), (1,22,26,12,15,35)(2,24,25,10,13,34,3,23,27,11,14,36)(4,32)(5,33,6,31)(7,29,21,17,9,30,19,16,8,28,20,18), (1,6,3,5)(2,4)(7,10,8,12)(9,11)(13,17,27,29)(14,18,26,28)(15,16,25,30)(19,23,32,35)(20,22,31,36)(21,24,33,34), (1,8,15,33)(2,9,14,32)(3,7,13,31)(4,22,16,35,29,10,6,23,17,34,28,11)(5,24,18,36,30,12)(19,25,21,26)(20,27) >;
 
Copy content gap:G := Group( (1,34)(2,36)(3,35)(4,32,30,19)(5,33,28,20)(6,31,29,21)(7,18,9,17,8,16)(10,14,11,13,12,15)(22,26,24,27,23,25), (1,22,26,12,15,35)(2,24,25,10,13,34,3,23,27,11,14,36)(4,32)(5,33,6,31)(7,29,21,17,9,30,19,16,8,28,20,18), (1,6,3,5)(2,4)(7,10,8,12)(9,11)(13,17,27,29)(14,18,26,28)(15,16,25,30)(19,23,32,35)(20,22,31,36)(21,24,33,34), (1,8,15,33)(2,9,14,32)(3,7,13,31)(4,22,16,35,29,10,6,23,17,34,28,11)(5,24,18,36,30,12)(19,25,21,26)(20,27) );
 
Copy content sage:G = PermutationGroup(['(1,34)(2,36)(3,35)(4,32,30,19)(5,33,28,20)(6,31,29,21)(7,18,9,17,8,16)(10,14,11,13,12,15)(22,26,24,27,23,25)', '(1,22,26,12,15,35)(2,24,25,10,13,34,3,23,27,11,14,36)(4,32)(5,33,6,31)(7,29,21,17,9,30,19,16,8,28,20,18)', '(1,6,3,5)(2,4)(7,10,8,12)(9,11)(13,17,27,29)(14,18,26,28)(15,16,25,30)(19,23,32,35)(20,22,31,36)(21,24,33,34)', '(1,8,15,33)(2,9,14,32)(3,7,13,31)(4,22,16,35,29,10,6,23,17,34,28,11)(5,24,18,36,30,12)(19,25,21,26)(20,27)'])
 
Transitive group: 36T108450 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^{12}$ . $(C_6:S_3^3.C_2^4)$ $C_3^8$ . $(C_3^8:(C_2^5.D_4))$ $(C_3^9.C_3^5.D_6^2.C_2)$ . $D_4$ (8) $(C_3^{11}.D_6)$ . $(C_6:S_3^3:C_4)$ (3) all 41

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 218 normal subgroups (54 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to 6561.1396077
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{12}.C_3^4$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 8 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $7300 \times 7300$ character table is not available for this group.

Rational character table

The $7119 \times 7119$ rational character table is not available for this group.