magma: G := SmallGroup(1080, 263);
gap: G := SmallGroup(1080, 263);
sage_gap: G = libgap.SmallGroup(1080, 263)
sage: G = PermutationGroup(['(1,2)(3,4)(5,6)(7,8)(10,12,11)', '(1,3)(4,5)(6,7)(8,9)(11,14,13)'])
Group information
Description: $D_9\times A_5$
Order: \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \)
magma: Order(G);
gap: Order(G);
sage: G.order()
sage_gap: G.Order()
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
magma: Exponent(G);
gap: Exponent(G);
sage: G.exponent()
sage_gap: G.Exponent()
Automorphism group :$C_9:C_6\times S_5$ , of order \(6480\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5 \)
gap: AutomorphismGroup(G);
magma: AutomorphismGroup(G);
sage_gap: G.AutomorphismGroup()
Composition factors :$C_2$ , $C_3$ x 2 , $A_5$
magma: CompositionFactors(G);
gap: CompositionSeries(G);
sage: G.composition_series()
sage_gap: G.CompositionSeries()
Derived length: $2$
magma: DerivedLength(G);
gap: DerivedLength(G);
sage_gap: G.DerivedLength()
This group is nonabelian , an A-group , and nonsolvable .
magma: IsAbelian(G);
gap: IsAbelian(G);
sage: G.is_abelian()
sage_gap: G.IsAbelian()
magma: IsCyclic(G);
gap: IsCyclic(G);
sage: G.is_cyclic()
sage_gap: G.IsCyclic()
magma: IsNilpotent(G);
gap: IsNilpotentGroup(G);
sage: G.is_nilpotent()
sage_gap: G.IsNilpotentGroup()
magma: IsSolvable(G);
gap: IsSolvableGroup(G);
sage: G.is_solvable()
sage_gap: G.IsSolvableGroup()
gap: IsSupersolvableGroup(G);
sage: G.is_supersolvable()
sage_gap: G.IsSupersolvableGroup()
magma: IsSimple(G);
gap: IsSimpleGroup(G);
sage_gap: G.IsSimpleGroup()
Group statistics
magma: // Magma code to output the first two rows of the group statistics table
element_orders := [Order(g) : g in G];
orders := Set(element_orders);
printf "Orders: %o\n", orders;
printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G);
cc_orders := [cc[1] : cc in ConjugacyClasses(G)];
printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
gap: # Gap code to output the first two rows of the group statistics table
element_orders := List(Elements(G), g -> Order(g));
orders := Set(element_orders);
Print("Orders: ", orders, "\n");
element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n)));
Print("Elements: ", element_counts, " ", Size(G), "\n");
cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc)));
cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n)));
Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
sage: # Sage code to output the first two rows of the group statistics table
element_orders = [g.order() for g in G]
orders = sorted(list(set(element_orders)))
print("Orders:", orders)
print("Elements:", [element_orders.count(n) for n in orders], G.order())
cc_orders = [cc[0].order() for cc in G.conjugacy_classes()]
print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
magma: // Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i
CharacterDegrees(G);
gap: # Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i
CharacterDegrees(G);
sage: # Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i
character_degrees = [c[0] for c in G.character_table()]
[[n, character_degrees.count(n)] for n in set(character_degrees)]
sage_gap: G.CharacterDegrees()
Minimal presentations
Constructions
Permutation group :Degree $14$
$\langle(1,2)(3,4)(5,6)(7,8)(10,12,11), (1,3)(4,5)(6,7)(8,9)(11,14,13)\rangle$
magma: G := PermutationGroup< 14 | (1,2)(3,4)(5,6)(7,8)(10,12,11), (1,3)(4,5)(6,7)(8,9)(11,14,13) >;
gap: G := Group( (1,2)(3,4)(5,6)(7,8)(10,12,11), (1,3)(4,5)(6,7)(8,9)(11,14,13) );
sage: G = PermutationGroup(['(1,2)(3,4)(5,6)(7,8)(10,12,11)', '(1,3)(4,5)(6,7)(8,9)(11,14,13)'])
Transitive group :
45T157
more information
Direct product :
$D_9$ $\, \times\, $ $A_5$
Semidirect product :
$(C_9\times A_5)$ $\,\rtimes\,$ $C_2$
$C_9$ $\,\rtimes\,$ $(C_2\times A_5)$
more information
Trans. wreath product :
not isomorphic to a non-trivial transitive wreath product
Non-split product :
$\GL(2,4)$ . $S_3$
$C_3$ . $(S_3\times A_5)$
more information
Elements of the group are displayed as permutations of degree 14.
Homology
Abelianization :
$C_{2} $
magma: quo< G | CommutatorSubgroup(G) >;
gap: FactorGroup(G, DerivedSubgroup(G));
sage: G.quotient(G.commutator())
Schur multiplier :
$C_{2}$
gap: AbelianInvariantsMultiplier(G);
sage: G.homology(2)
sage_gap: G.AbelianInvariantsMultiplier()
Commutator length :
$1$
gap: CommutatorLength(G);
sage_gap: G.CommutatorLength()
Subgroups
magma: Subgroups(G);
gap: AllSubgroups(G);
sage: G.subgroups()
sage_gap: G.AllSubgroups()
There are 1842 subgroups in 72 conjugacy classes , 8 normal , and all normal subgroups are characteristic.
Characteristic subgroups are shown in this color .
Special subgroups
Hi
diagram
profile
all subgroups
normal subgroups
up to conjugacy
up to automorphism
Classes of subgroups up to conjugation
Classes of subgroups up to automorphism
Normal subgroups
Normal subgroups up to automorphism
Classes of subgroups up to conjugation
Order 1080: $D_9\times A_5$
Order 540: $C_9\times A_5$
Order 360: $S_3\times A_5$
Order 216: $A_4\times D_9$
Order 180: $D_5\times D_9$ , $\GL(2,4)$
Order 120: $C_2\times A_5$
Order 108: $C_9\times A_4$ , $S_3\times D_9$
Order 90: $D_{45}$ , $C_9\times D_5$ , $C_5\times D_9$
Order 72: $S_3\times A_4$ , $C_2\times D_{18}$
Order 60: $S_3\times D_5$ , $A_5$
Order 54: $C_3:D_9$ , $S_3\times C_9$ , $C_3\times D_9$
Order 45: $C_{45}$
Order 36: $D_{18}$ x 2, $C_2\times C_{18}$ , $C_2^2:C_9$ , $C_3\times A_4$ , $S_3^2$
Order 30: $D_{15}$ , $C_3\times D_5$ , $C_5\times S_3$
Order 27: $C_3\times C_9$
Order 24: $C_2\times D_6$ , $C_2\times A_4$
Order 20: $D_{10}$
Order 18: $D_9$ x 3, $C_3\times S_3$ x 2, $C_3:S_3$ , $C_{18}$
Order 15: $C_{15}$
Order 12: $D_6$ x 3, $A_4$ x 2, $C_2\times C_6$
Order 10: $D_5$ x 2, $C_{10}$
Order 9: $C_9$ x 2, $C_3^2$
Order 8: $C_2^3$
Order 6: $S_3$ x 5, $C_6$ x 2
Order 5: $C_5$
Order 4: $C_2^2$ x 3
Order 3: $C_3$ x 3
Order 2: $C_2$ x 3
Order 1: $C_1$
Classes of subgroups up to automorphism
Order 1080: $D_9\times A_5$
Order 540: $C_9\times A_5$
Order 360: $S_3\times A_5$
Order 216: $A_4\times D_9$
Order 180: $D_5\times D_9$ , $\GL(2,4)$
Order 120: $C_2\times A_5$
Order 108: $C_9\times A_4$ , $S_3\times D_9$
Order 90: $D_{45}$ , $C_9\times D_5$ , $C_5\times D_9$
Order 72: $S_3\times A_4$ , $C_2\times D_{18}$
Order 60: $S_3\times D_5$ , $A_5$
Order 54: $C_3:D_9$ , $S_3\times C_9$ , $C_3\times D_9$
Order 45: $C_{45}$
Order 36: $D_{18}$ x 2, $C_2\times C_{18}$ , $C_2^2:C_9$ , $C_3\times A_4$ , $S_3^2$
Order 30: $D_{15}$ , $C_3\times D_5$ , $C_5\times S_3$
Order 27: $C_3\times C_9$
Order 24: $C_2\times D_6$ , $C_2\times A_4$
Order 20: $D_{10}$
Order 18: $D_9$ x 3, $C_3\times S_3$ x 2, $C_3:S_3$ , $C_{18}$
Order 15: $C_{15}$
Order 12: $D_6$ x 3, $A_4$ x 2, $C_2\times C_6$
Order 10: $D_5$ x 2, $C_{10}$
Order 9: $C_9$ x 2, $C_3^2$
Order 8: $C_2^3$
Order 6: $S_3$ x 5, $C_6$ x 2
Order 5: $C_5$
Order 4: $C_2^2$ x 3
Order 3: $C_3$ x 3
Order 2: $C_2$ x 3
Order 1: $C_1$
Normal subgroups (quotient in parentheses)
Normal subgroups up to automorphism (quotient in parentheses)
Series
Derived series
$D_9\times A_5$
$\rhd$
$C_9\times A_5$
$\rhd$
$A_5$
magma: DerivedSeries(G);
gap: DerivedSeriesOfGroup(G);
sage: G.derived_series()
sage_gap: G.DerivedSeriesOfGroup()
Chief series
$D_9\times A_5$
$\rhd$
$D_9$
$\rhd$
$C_9$
$\rhd$
$C_3$
$\rhd$
$C_1$
magma: ChiefSeries(G);
gap: ChiefSeries(G);
sage_gap: G.ChiefSeries()
Lower central series
$D_9\times A_5$
$\rhd$
$C_9\times A_5$
magma: LowerCentralSeries(G);
gap: LowerCentralSeriesOfGroup(G);
sage: G.lower_central_series()
sage_gap: G.LowerCentralSeriesOfGroup()
Upper central series
$C_1$
magma: UpperCentralSeries(G);
gap: UpperCentralSeriesOfGroup(G);
sage: G.upper_central_series()
sage_gap: G.UpperCentralSeriesOfGroup()
Supergroups
This group is a maximal subgroup of 6 larger groups in the database.
This group is a maximal quotient of 2 larger groups in the database.
Character theory
magma: CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
gap: CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
sage: G.character_table() # Output not guaranteed to exactly match the LMFDB table
sage_gap: G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
See the $30 \times 30$ character table .
Alternatively, you may search for characters of this group with desired properties.