Properties

Label 105468750.f
Order \( 2 \cdot 3^{3} \cdot 5^{9} \)
Exponent \( 2 \cdot 3 \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2 \cdot 3 \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{8} \cdot 3^{3} \cdot 5^{9} \)
$\card{\mathrm{Out}(G)}$ \( 2^{7} \)
Perm deg. $45$
Trans deg. $45$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 45 | (1,2)(3,5)(6,44,9,41,7,43,10,45,8,42)(11,33,24,40,18,26,13,35,21,38,16,28,15,32,23,36,19,30,12,34,25,39,17,27,14,31,22,37,20,29), (1,37,21,3,40,24,5,38,22,2,36,25,4,39,23)(6,29,15)(7,28,11)(8,27,12)(9,26,13)(10,30,14)(16,43,33,17,42,34,18,41,35,19,45,31,20,44,32) >;
 
Copy content gap:G := Group( (1,2)(3,5)(6,44,9,41,7,43,10,45,8,42)(11,33,24,40,18,26,13,35,21,38,16,28,15,32,23,36,19,30,12,34,25,39,17,27,14,31,22,37,20,29), (1,37,21,3,40,24,5,38,22,2,36,25,4,39,23)(6,29,15)(7,28,11)(8,27,12)(9,26,13)(10,30,14)(16,43,33,17,42,34,18,41,35,19,45,31,20,44,32) );
 
Copy content sage:G = PermutationGroup(['(1,2)(3,5)(6,44,9,41,7,43,10,45,8,42)(11,33,24,40,18,26,13,35,21,38,16,28,15,32,23,36,19,30,12,34,25,39,17,27,14,31,22,37,20,29)', '(1,37,21,3,40,24,5,38,22,2,36,25,4,39,23)(6,29,15)(7,28,11)(8,27,12)(9,26,13)(10,30,14)(16,43,33,17,42,34,18,41,35,19,45,31,20,44,32)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(69328859377052287587331988536606847058579847639847082119855709778375857621483924721738173095739333405741400859057669665240020077535972784396125131151385358154183638798008262950974761174714910933218158937591936528120514025549145457802722233720707627935857672267828058532612249949794993491103138243958694131904334931476689586489811445912241338797650631207317971345997823,105468750)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13;
 

Group information

Description:$C_5^6.C_{15}^2:D_{15}$
Order: \(105468750\)\(\medspace = 2 \cdot 3^{3} \cdot 5^{9} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(13500000000\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5^{9} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$, $C_3$ x 3, $C_5$ x 9
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial or rational has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Statistics about orders of elements in this group have not been computed.

Minimal presentations

Permutation degree:$45$
Transitive degree:$45$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid b^{15}=c^{15}=d^{5}=e^{5}=f^{5}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([13, -2, -3, -3, -5, -3, -5, 5, -5, 5, 5, 5, 5, 5, 26, 900897674, 2922032648, 47757192, 145, 23871747, 1125306484, 5919696904, 3336477317, 59505, 216889118, 251, 84245, 811901641, 3791986386, 3946003444, 731227802, 21329548, 4494906007, 4563020, 29952033, 101459, 2804402258, 2369271, 1944759409, 52710, 11235510009, 1577306272, 73856285, 124790311, 3538606510, 70463273, 1159908786, 155802137, 9685494011, 5538780024, 2585992537, 114051663, 7628195262, 1821207400, 2716886288, 49153714]); a,b,c,d,e,f,g,h,i,j := Explode([G.1, G.3, G.5, G.7, G.8, G.9, G.10, G.11, G.12, G.13]); AssignNames(~G, ["a", "a2", "b", "b3", "c", "c3", "d", "e", "f", "g", "h", "i", "j"]);
 
Copy content gap:G := PcGroupCode(69328859377052287587331988536606847058579847639847082119855709778375857621483924721738173095739333405741400859057669665240020077535972784396125131151385358154183638798008262950974761174714910933218158937591936528120514025549145457802722233720707627935857672267828058532612249949794993491103138243958694131904334931476689586489811445912241338797650631207317971345997823,105468750); a := G.1; b := G.3; c := G.5; d := G.7; e := G.8; f := G.9; g := G.10; h := G.11; i := G.12; j := G.13;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(69328859377052287587331988536606847058579847639847082119855709778375857621483924721738173095739333405741400859057669665240020077535972784396125131151385358154183638798008262950974761174714910933218158937591936528120514025549145457802722233720707627935857672267828058532612249949794993491103138243958694131904334931476689586489811445912241338797650631207317971345997823,105468750)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(69328859377052287587331988536606847058579847639847082119855709778375857621483924721738173095739333405741400859057669665240020077535972784396125131151385358154183638798008262950974761174714910933218158937591936528120514025549145457802722233720707627935857672267828058532612249949794993491103138243958694131904334931476689586489811445912241338797650631207317971345997823,105468750)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13;
 
Permutation group:Degree $45$ $\langle(1,2)(3,5)(6,44,9,41,7,43,10,45,8,42)(11,33,24,40,18,26,13,35,21,38,16,28,15,32,23,36,19,30,12,34,25,39,17,27,14,31,22,37,20,29) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 45 | (1,2)(3,5)(6,44,9,41,7,43,10,45,8,42)(11,33,24,40,18,26,13,35,21,38,16,28,15,32,23,36,19,30,12,34,25,39,17,27,14,31,22,37,20,29), (1,37,21,3,40,24,5,38,22,2,36,25,4,39,23)(6,29,15)(7,28,11)(8,27,12)(9,26,13)(10,30,14)(16,43,33,17,42,34,18,41,35,19,45,31,20,44,32) >;
 
Copy content gap:G := Group( (1,2)(3,5)(6,44,9,41,7,43,10,45,8,42)(11,33,24,40,18,26,13,35,21,38,16,28,15,32,23,36,19,30,12,34,25,39,17,27,14,31,22,37,20,29), (1,37,21,3,40,24,5,38,22,2,36,25,4,39,23)(6,29,15)(7,28,11)(8,27,12)(9,26,13)(10,30,14)(16,43,33,17,42,34,18,41,35,19,45,31,20,44,32) );
 
Copy content sage:G = PermutationGroup(['(1,2)(3,5)(6,44,9,41,7,43,10,45,8,42)(11,33,24,40,18,26,13,35,21,38,16,28,15,32,23,36,19,30,12,34,25,39,17,27,14,31,22,37,20,29)', '(1,37,21,3,40,24,5,38,22,2,36,25,4,39,23)(6,29,15)(7,28,11)(8,27,12)(9,26,13)(10,30,14)(16,43,33,17,42,34,18,41,35,19,45,31,20,44,32)'])
 
Transitive group: 45T3794 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_5^9.C_3^2)$ . $S_3$ $(C_5^8.\He_3)$ . $D_5$ $C_5^7$ . $(C_{15}^2:S_3)$ $(C_5^8.C_3^2)$ . $D_{15}$ all 18

Elements of the group are displayed as permutations of degree 45.

Homology

Abelianization: $C_{6} \simeq C_{2} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 22 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_5^2.C_5^7:C_3^2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $\He_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^9$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 6 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

The character tables for this group have not been computed.