Properties

Label 104976.mi
Order \( 2^{4} \cdot 3^{8} \)
Exponent \( 2^{2} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 3 \)
$\card{\Aut(G)}$ \( 2^{9} \cdot 3^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{5} \cdot 3 \)
Perm deg. $24$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,3,8,4,10,17)(2,6,13,7,15,9)(5,11,16,12,18,14)(19,20,23,22,24,21), (1,2,5)(3,4,9)(6,7,14)(8,10,16,18,13,15)(11,12,17)(20,22)(23,24), (1,4,10,11)(2,7,15,3)(5,12,18,6)(8,9)(13,14)(16,17)(19,21,23,20,24,22) >;
 
Copy content gap:G := Group( (1,3,8,4,10,17)(2,6,13,7,15,9)(5,11,16,12,18,14)(19,20,23,22,24,21), (1,2,5)(3,4,9)(6,7,14)(8,10,16,18,13,15)(11,12,17)(20,22)(23,24), (1,4,10,11)(2,7,15,3)(5,12,18,6)(8,9)(13,14)(16,17)(19,21,23,20,24,22) );
 
Copy content sage:G = PermutationGroup(['(1,3,8,4,10,17)(2,6,13,7,15,9)(5,11,16,12,18,14)(19,20,23,22,24,21)', '(1,2,5)(3,4,9)(6,7,14)(8,10,16,18,13,15)(11,12,17)(20,22)(23,24)', '(1,4,10,11)(2,7,15,3)(5,12,18,6)(8,9)(13,14)(16,17)(19,21,23,20,24,22)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2447689243916312243319027920700705781793914717238800243865428561261582419806286967035736441110136403596370777625451026350410321336544493362979569804762357971356075529299675190923675050278384884051102220386978305276817037048958654001855,104976)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12;
 

Group information

Description:$C_3^4.S_3^2:S_3^2$
Order: \(104976\)\(\medspace = 2^{4} \cdot 3^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$\He_3:(C_3:S_3).C_6^2.C_6.C_2^5$, of order \(3359232\)\(\medspace = 2^{9} \cdot 3^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 4, $C_3$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 12
Elements 1 1323 6560 2916 70848 23328 104976
Conjugacy classes   1 7 132 2 208 10 360
Divisions 1 7 102 2 138 6 256
Autjugacy classes 1 6 23 1 52 3 86

Minimal presentations

Permutation degree:$24$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i \mid b^{6}=c^{6}=d^{6}=e^{3}=f^{3}=g^{3}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([12, 2, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 625536, 736081, 61, 1825058, 2442819, 610575, 608427, 135, 158404, 2589136, 39268, 5075141, 1561697, 1439885, 424697, 2861, 209, 2951430, 308466, 737886, 247002, 82951, 884755, 72607, 1219, 3779156, 1244169, 3188181, 155553, 64845, 25977, 15189, 1533, 7356106, 3849142, 2779954, 684334, 78466, 168766, 42850, 4450, 186647]); a,b,c,d,e,f,g,h,i := Explode([G.1, G.2, G.4, G.6, G.8, G.9, G.10, G.11, G.12]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "d2", "e", "f", "g", "h", "i"]);
 
Copy content gap:G := PcGroupCode(2447689243916312243319027920700705781793914717238800243865428561261582419806286967035736441110136403596370777625451026350410321336544493362979569804762357971356075529299675190923675050278384884051102220386978305276817037048958654001855,104976); a := G.1; b := G.2; c := G.4; d := G.6; e := G.8; f := G.9; g := G.10; h := G.11; i := G.12;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2447689243916312243319027920700705781793914717238800243865428561261582419806286967035736441110136403596370777625451026350410321336544493362979569804762357971356075529299675190923675050278384884051102220386978305276817037048958654001855,104976)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2447689243916312243319027920700705781793914717238800243865428561261582419806286967035736441110136403596370777625451026350410321336544493362979569804762357971356075529299675190923675050278384884051102220386978305276817037048958654001855,104976)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12;
 
Permutation group:Degree $24$ $\langle(1,3,8,4,10,17)(2,6,13,7,15,9)(5,11,16,12,18,14)(19,20,23,22,24,21), (1,2,5) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,3,8,4,10,17)(2,6,13,7,15,9)(5,11,16,12,18,14)(19,20,23,22,24,21), (1,2,5)(3,4,9)(6,7,14)(8,10,16,18,13,15)(11,12,17)(20,22)(23,24), (1,4,10,11)(2,7,15,3)(5,12,18,6)(8,9)(13,14)(16,17)(19,21,23,20,24,22) >;
 
Copy content gap:G := Group( (1,3,8,4,10,17)(2,6,13,7,15,9)(5,11,16,12,18,14)(19,20,23,22,24,21), (1,2,5)(3,4,9)(6,7,14)(8,10,16,18,13,15)(11,12,17)(20,22)(23,24), (1,4,10,11)(2,7,15,3)(5,12,18,6)(8,9)(13,14)(16,17)(19,21,23,20,24,22) );
 
Copy content sage:G = PermutationGroup(['(1,3,8,4,10,17)(2,6,13,7,15,9)(5,11,16,12,18,14)(19,20,23,22,24,21)', '(1,2,5)(3,4,9)(6,7,14)(8,10,16,18,13,15)(11,12,17)(20,22)(23,24)', '(1,4,10,11)(2,7,15,3)(5,12,18,6)(8,9)(13,14)(16,17)(19,21,23,20,24,22)'])
 
Transitive group: 36T20175 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not computed
Possibly split product: $(C_3^5.S_3^3)$ . $C_2$ $C_3^5$ . $(S_3^3:C_2)$ $\He_3^2$ . $(D_6:D_6)$ $C_3^4$ . $(S_3^2:S_3^2)$ all 29

Elements of the group are displayed as permutations of degree 24.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 74 normal subgroups (26 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_3$ $G/Z \simeq$ $C_3.C_3^5.D_{12}.C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_3^4.C_3^4.C_2$ $G/G' \simeq$ $C_2^3$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_3^2$ $G/\Phi \simeq$ $C_3^6:(C_2\times D_4)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3^2\times C_3^4.C_3^2$ $G/\operatorname{Fit} \simeq$ $C_2\times D_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3^4.S_3^2:S_3^2$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_3^4$ $G/\operatorname{soc} \simeq$ $C_2\times C_3^4:D_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2\times D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^2\times C_3^4.C_3^2$

Subgroup diagram and profile

Series

Derived series $C_3^4.S_3^2:S_3^2$ $\rhd$ $C_3^4.C_3^4.C_2$ $\rhd$ $\He_3^2$ $\rhd$ $C_3^2$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_3^4.S_3^2:S_3^2$ $\rhd$ $C_3^4.C_3^4.C_2^3$ $\rhd$ $C_3^6.C_3.D_6$ $\rhd$ $C_3^4.C_3^4.C_2$ $\rhd$ $C_3^2\times C_3^4.C_3^2$ $\rhd$ $C_3\times C_3^4.C_3^2$ $\rhd$ $\He_3^2$ $\rhd$ $C_3^4$ $\rhd$ $C_3^2$ $\rhd$ $C_3$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_3^4.S_3^2:S_3^2$ $\rhd$ $C_3^4.C_3^4.C_2$ $\rhd$ $C_3^2\times C_3^4.C_3^2$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_3$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 6 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $360 \times 360$ character table is not available for this group.

Rational character table

The $256 \times 256$ rational character table is not available for this group.