Properties

Label 100000000.bgm
Order \( 2^{8} \cdot 5^{8} \)
Exponent \( 2^{3} \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{5} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{17} \cdot 5^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{9} \)
Perm deg. $40$
Trans deg. not computed
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,29,4,28,5,26,2,27)(3,30)(6,21)(7,24,9,25,10,23,8,22)(11,19,12,18,15,20,14,16)(13,17)(31,37,34,38,35,40,32,39)(33,36), (1,11,4,13,2,15,5,12,3,14)(6,39,9,36,7,38,10,40,8,37)(16,35,20,32,19,34,18,31,17,33)(21,27,22,30,23,28,24,26,25,29), (1,5)(2,4)(6,8)(9,10)(11,13)(14,15)(16,24,19,22,17,25,20,23,18,21)(26,33)(27,34)(28,35)(29,31)(30,32)(36,38)(39,40), (1,33,5,31,3,32,4,34)(2,35)(6,17,10,19,7,20,8,18)(9,16)(11,23)(12,22,14,25,15,24,13,21)(26,37,27,40,29,36,28,38)(30,39) >;
 
Copy content gap:G := Group( (1,29,4,28,5,26,2,27)(3,30)(6,21)(7,24,9,25,10,23,8,22)(11,19,12,18,15,20,14,16)(13,17)(31,37,34,38,35,40,32,39)(33,36), (1,11,4,13,2,15,5,12,3,14)(6,39,9,36,7,38,10,40,8,37)(16,35,20,32,19,34,18,31,17,33)(21,27,22,30,23,28,24,26,25,29), (1,5)(2,4)(6,8)(9,10)(11,13)(14,15)(16,24,19,22,17,25,20,23,18,21)(26,33)(27,34)(28,35)(29,31)(30,32)(36,38)(39,40), (1,33,5,31,3,32,4,34)(2,35)(6,17,10,19,7,20,8,18)(9,16)(11,23)(12,22,14,25,15,24,13,21)(26,37,27,40,29,36,28,38)(30,39) );
 
Copy content sage:G = PermutationGroup(['(1,29,4,28,5,26,2,27)(3,30)(6,21)(7,24,9,25,10,23,8,22)(11,19,12,18,15,20,14,16)(13,17)(31,37,34,38,35,40,32,39)(33,36)', '(1,11,4,13,2,15,5,12,3,14)(6,39,9,36,7,38,10,40,8,37)(16,35,20,32,19,34,18,31,17,33)(21,27,22,30,23,28,24,26,25,29)', '(1,5)(2,4)(6,8)(9,10)(11,13)(14,15)(16,24,19,22,17,25,20,23,18,21)(26,33)(27,34)(28,35)(29,31)(30,32)(36,38)(39,40)', '(1,33,5,31,3,32,4,34)(2,35)(6,17,10,19,7,20,8,18)(9,16)(11,23)(12,22,14,25,15,24,13,21)(26,37,27,40,29,36,28,38)(30,39)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5612166567958995603851929950200516173010556473833011373683537867169805109978199692084335478438977928694324200699623771023441056731614357322073584655282307921697685129040011932288247779880027378915652093844920435294113301800722675311699581123708421604438295856206131960558884274635681720368801952774491323300483686750649881156495957204640012530436469877161774600670500216578964599252311874821377201935827343495549461415184301485641417556953418245203716430598488531289975972136899453877482686256432485754341045777230863269634874496018950071975523151415518009484155165393727622092105953050249454332883855892471999161930058814980884011902788074529070416641451633769878714484548094164626127481681172467542881031794793214974089405582270287524863,100000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16;
 

Group information

Description:$C_5^4.D_5^4.(C_2^2\times C_4)$
Order: \(100000000\)\(\medspace = 2^{8} \cdot 5^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(51200000000\)\(\medspace = 2^{17} \cdot 5^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 8, $C_5$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 5 8 10
Elements 1 486975 25000000 390624 50000000 24122400 100000000
Conjugacy classes   1 23 24 1902 16 1218 3184
Divisions 1 23 20 1902 8 1218 3172
Autjugacy classes 1 8 9 39 1 54 112

Minimal presentations

Permutation degree:$40$
Transitive degree:not computed
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid b^{4}=c^{10}=d^{10}=e^{10}=f^{10}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([16, 2, 2, 2, 2, 2, 5, 2, 5, 2, 5, 2, 5, 5, 5, 5, 5, 32, 416995473, 564025538, 2398571634, 130, 6109596163, 713021715, 6948095364, 129805460, 1555341796, 930891092, 228, 8574289925, 2789838357, 2341173541, 1589, 9380234758, 953890582, 2024256678, 582465014, 381280550, 44263046, 326, 7118852103, 1994772503, 2112542759, 20535, 744714311, 8760854024, 6701121816, 2342419240, 1189123256, 22190472, 265543288, 26998664, 41890440, 424, 14116372489, 2548328985, 3833856041, 256057, 667232073, 66892905, 15728017546, 364788186, 884928042, 1326688058, 573936074, 118888090, 92593706, 32832922, 332778, 3679434, 522, 12842803211, 6328320027, 3072043, 3072059, 15499, 20190317068, 4157710364, 24960044, 16640060, 757120076, 8492, 726132749, 7300679709, 3601920045, 89600061, 1290240077, 4009741, 44973, 8412679694, 434342430, 5001600046, 480000062, 631200078, 94080110, 240174, 5934293007, 10498506783, 2570240047, 2560000063, 1249280079, 18176111, 2073743, 1280175]); a,b,c,d,e,f,g,h,i,j := Explode([G.1, G.3, G.5, G.7, G.9, G.11, G.13, G.14, G.15, G.16]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "h", "i", "j"]);
 
Copy content gap:G := PcGroupCode(5612166567958995603851929950200516173010556473833011373683537867169805109978199692084335478438977928694324200699623771023441056731614357322073584655282307921697685129040011932288247779880027378915652093844920435294113301800722675311699581123708421604438295856206131960558884274635681720368801952774491323300483686750649881156495957204640012530436469877161774600670500216578964599252311874821377201935827343495549461415184301485641417556953418245203716430598488531289975972136899453877482686256432485754341045777230863269634874496018950071975523151415518009484155165393727622092105953050249454332883855892471999161930058814980884011902788074529070416641451633769878714484548094164626127481681172467542881031794793214974089405582270287524863,100000000); a := G.1; b := G.3; c := G.5; d := G.7; e := G.9; f := G.11; g := G.13; h := G.14; i := G.15; j := G.16;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5612166567958995603851929950200516173010556473833011373683537867169805109978199692084335478438977928694324200699623771023441056731614357322073584655282307921697685129040011932288247779880027378915652093844920435294113301800722675311699581123708421604438295856206131960558884274635681720368801952774491323300483686750649881156495957204640012530436469877161774600670500216578964599252311874821377201935827343495549461415184301485641417556953418245203716430598488531289975972136899453877482686256432485754341045777230863269634874496018950071975523151415518009484155165393727622092105953050249454332883855892471999161930058814980884011902788074529070416641451633769878714484548094164626127481681172467542881031794793214974089405582270287524863,100000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5612166567958995603851929950200516173010556473833011373683537867169805109978199692084335478438977928694324200699623771023441056731614357322073584655282307921697685129040011932288247779880027378915652093844920435294113301800722675311699581123708421604438295856206131960558884274635681720368801952774491323300483686750649881156495957204640012530436469877161774600670500216578964599252311874821377201935827343495549461415184301485641417556953418245203716430598488531289975972136899453877482686256432485754341045777230863269634874496018950071975523151415518009484155165393727622092105953050249454332883855892471999161930058814980884011902788074529070416641451633769878714484548094164626127481681172467542881031794793214974089405582270287524863,100000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16;
 
Permutation group:Degree $40$ $\langle(1,29,4,28,5,26,2,27)(3,30)(6,21)(7,24,9,25,10,23,8,22)(11,19,12,18,15,20,14,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,29,4,28,5,26,2,27)(3,30)(6,21)(7,24,9,25,10,23,8,22)(11,19,12,18,15,20,14,16)(13,17)(31,37,34,38,35,40,32,39)(33,36), (1,11,4,13,2,15,5,12,3,14)(6,39,9,36,7,38,10,40,8,37)(16,35,20,32,19,34,18,31,17,33)(21,27,22,30,23,28,24,26,25,29), (1,5)(2,4)(6,8)(9,10)(11,13)(14,15)(16,24,19,22,17,25,20,23,18,21)(26,33)(27,34)(28,35)(29,31)(30,32)(36,38)(39,40), (1,33,5,31,3,32,4,34)(2,35)(6,17,10,19,7,20,8,18)(9,16)(11,23)(12,22,14,25,15,24,13,21)(26,37,27,40,29,36,28,38)(30,39) >;
 
Copy content gap:G := Group( (1,29,4,28,5,26,2,27)(3,30)(6,21)(7,24,9,25,10,23,8,22)(11,19,12,18,15,20,14,16)(13,17)(31,37,34,38,35,40,32,39)(33,36), (1,11,4,13,2,15,5,12,3,14)(6,39,9,36,7,38,10,40,8,37)(16,35,20,32,19,34,18,31,17,33)(21,27,22,30,23,28,24,26,25,29), (1,5)(2,4)(6,8)(9,10)(11,13)(14,15)(16,24,19,22,17,25,20,23,18,21)(26,33)(27,34)(28,35)(29,31)(30,32)(36,38)(39,40), (1,33,5,31,3,32,4,34)(2,35)(6,17,10,19,7,20,8,18)(9,16)(11,23)(12,22,14,25,15,24,13,21)(26,37,27,40,29,36,28,38)(30,39) );
 
Copy content sage:G = PermutationGroup(['(1,29,4,28,5,26,2,27)(3,30)(6,21)(7,24,9,25,10,23,8,22)(11,19,12,18,15,20,14,16)(13,17)(31,37,34,38,35,40,32,39)(33,36)', '(1,11,4,13,2,15,5,12,3,14)(6,39,9,36,7,38,10,40,8,37)(16,35,20,32,19,34,18,31,17,33)(21,27,22,30,23,28,24,26,25,29)', '(1,5)(2,4)(6,8)(9,10)(11,13)(14,15)(16,24,19,22,17,25,20,23,18,21)(26,33)(27,34)(28,35)(29,31)(30,32)(36,38)(39,40)', '(1,33,5,31,3,32,4,34)(2,35)(6,17,10,19,7,20,8,18)(9,16)(11,23)(12,22,14,25,15,24,13,21)(26,37,27,40,29,36,28,38)(30,39)'])
 
Transitive group: 40T194010 40T194679 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_5^8.C_2.C_2^4)$ . $D_4$ (8) $(C_5^8.C_4.C_2^3)$ . $D_4$ (8) $(C_5^8.C_4.C_2^3)$ . $D_4$ (8) $(C_5^8.C_2.C_2^6)$ . $C_2$ all 51

Elements of the group are displayed as permutations of degree 40.

Homology

Abelianization: $C_{2}^{3} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{8}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 314 normal subgroups (28 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^8$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 46 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $3184 \times 3184$ character table is not available for this group.

Rational character table

The $3172 \times 3172$ rational character table is not available for this group.