Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
8281.a.8281.1 8281.a \( 7^{2} \cdot 13^{2} \) $2$ $\Z/3\Z$ \(\Q \times \Q\) $[72,1236,15984,33124]$ $[36,-152,392,-2248,8281]$ $[\frac{60466176}{8281},-\frac{7091712}{8281},\frac{10368}{169}]$ $y^2 + (x^3 + x^2 + x + 1)y = -x^4 - 3x^3 - x^2$
8281.a.753571.1 8281.a \( 7^{2} \cdot 13^{2} \) $2$ $\Z/3\Z$ \(\Q \times \Q\) $[1752,12756,7332144,3014284]$ $[876,29848,1258712,52932152,753571]$ $[\frac{515846550629376}{753571},\frac{220488611328}{8281},\frac{116641152}{91}]$ $y^2 + y = x^6 - 3x^5 + 6x^4 - 7x^3 + 7x^2 - 4x + 2$
8281.b.405769.1 8281.b \( 7^{2} \cdot 13^{2} \) $2$ $\mathsf{trivial}$ \(\mathrm{M}_2(\Q)\) $[2596,375193,248614093,51938432]$ $[649,1917,-1907,-1228133,405769]$ $[\frac{115139273278249}{405769},\frac{524030063733}{405769},-\frac{803230307}{405769}]$ $y^2 + (x^3 + x + 1)y = -3x^5 + 9x^4 - 7x^3 - 2x^2 + x$
8281.c.405769.1 8281.c \( 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[2596,375193,248614093,51938432]$ $[649,1917,-1907,-1228133,405769]$ $[\frac{115139273278249}{405769},\frac{524030063733}{405769},-\frac{803230307}{405769}]$ $y^2 + (x^2 + x)y = x^5 + 8x^4 + 11x^3 + 3x^2 - x$
  displayed columns for results