Learn more

Refine search


Results (3 matches)

  displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
5547.a.5547.1 5547.a \( 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ \(\Q\) $[1188,14577,4818537,710016]$ $[297,3068,43828,901073,5547]$ $[\frac{770301940419}{1849},\frac{26791895988}{1849},\frac{1288674684}{1849}]$ $y^2 + (x^3 + x + 1)y = -2x^4 + 4x^2 + x - 1$
5547.b.16641.1 5547.b \( 3 \cdot 43^{2} \) $2$ $\mathsf{trivial}$ \(\Q \times \Q\) $[520,6292,896816,66564]$ $[260,1768,16776,308984,16641]$ $[\frac{1188137600000}{16641},\frac{31074368000}{16641},\frac{126006400}{1849}]$ $y^2 + y = x^6 - 3x^5 + x^4 + 3x^3 - x^2 - x$
5547.c.715563.1 5547.c \( 3 \cdot 43^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q \times \Q\) $[344,-14972,-2380065,-2862252]$ $[172,3728,157009,3276891,-715563]$ $[-\frac{1893376}{9},-\frac{238592}{9},-\frac{2512144}{387}]$ $y^2 + (x + 1)y = 3x^5 - 5x^4 + x^3$
  displayed columns for results