Learn more

Refine search


Results (6 matches)

  displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
21904.a.21904.1 21904.a \( 2^{4} \cdot 37^{2} \) $1$ $\mathsf{trivial}$ \(\Q \times \Q\) $[72,4245,4383,-2738]$ $[72,-2614,53568,-744025,-21904]$ $[-\frac{120932352}{1369},\frac{60979392}{1369},-\frac{17356032}{1369}]$ $y^2 + y = -x^6 - 3x^4 - 2x^2$
21904.b.21904.1 21904.b \( 2^{4} \cdot 37^{2} \) $2$ $\mathsf{trivial}$ \(\Q \times \Q\) $[312,789,80049,2738]$ $[312,3530,44736,374183,21904]$ $[\frac{184779159552}{1369},\frac{6700674240}{1369},\frac{272173824}{1369}]$ $y^2 + y = -x^6 + 3x^4 - 2x^2$
21904.c.21904.1 21904.c \( 2^{4} \cdot 37^{2} \) $1$ $\Z/3\Z$ \(\Q \times \Q\) $[376,2005,226729,2738]$ $[376,4554,61120,560551,21904]$ $[\frac{469698574336}{1369},\frac{15129918144}{1369},\frac{540056320}{1369}]$ $y^2 + y = -x^6 + 4x^4 - 2x^2$
21904.d.21904.1 21904.d \( 2^{4} \cdot 37^{2} \) $2$ $\mathsf{trivial}$ \(\Q \times \Q\) $[120,213,14793,2738]$ $[120,458,-4416,-184921,21904]$ $[\frac{1555200000}{1369},\frac{49464000}{1369},-\frac{3974400}{1369}]$ $y^2 + x^3y = x^4 - 1$
21904.e.350464.1 21904.e \( 2^{4} \cdot 37^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[302,5032,388574,1369]$ $[604,1782,-1772,-1061453,350464]$ $[\frac{314010903004}{1369},\frac{3067669341}{2738},-\frac{10100843}{5476}]$ $y^2 = x^5 + 3x^4 - 11x^3 + 8x^2 - x$
21904.f.810448.1 21904.f \( 2^{4} \cdot 37^{2} \) $0$ $\Z/3\Z$ \(\Q \times \Q\) $[8440,111445,301327705,101306]$ $[8440,2893770,1298031040,645369291175,810448]$ $[\frac{2676654093126400000}{50653},\frac{2938797374040000}{1369},\frac{4221303136000}{37}]$ $y^2 + x^3y = -5x^4 + 25x^2 - 37$
  displayed columns for results