Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
9996.a1 |
9996g1 |
9996.a |
9996g |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( 2^{4} \cdot 3^{3} \cdot 7^{7} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1428$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$10368$ |
$0.877794$ |
$1302642688/54621$ |
$0.89951$ |
$3.84755$ |
$[0, -1, 0, -2809, 56134]$ |
\(y^2=x^3-x^2-2809x+56134\) |
2.3.0.a.1, 42.6.0.a.1, 68.6.0.b.1, 1428.12.0.? |
$[ ]$ |
9996.a2 |
9996g2 |
9996.a |
9996g |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{6} \cdot 7^{8} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1428$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$20736$ |
$1.224367$ |
$9148592/607257$ |
$0.90063$ |
$4.12416$ |
$[0, -1, 0, 1356, 204408]$ |
\(y^2=x^3-x^2+1356x+204408\) |
2.3.0.a.1, 68.6.0.a.1, 84.6.0.?, 1428.12.0.? |
$[ ]$ |
9996.b1 |
9996c1 |
9996.b |
9996c |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3 \cdot 7^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1.402552671$ |
$1$ |
|
$2$ |
$4608$ |
$0.461413$ |
$-65536/51$ |
$1.18457$ |
$3.16649$ |
$[0, -1, 0, -261, 2577]$ |
\(y^2=x^3-x^2-261x+2577\) |
102.2.0.? |
$[(-16, 49)]$ |
9996.c1 |
9996f2 |
9996.c |
9996f |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{5} \cdot 7^{10} \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$42$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$771120$ |
$3.161381$ |
$-1272481306550272000/5865429267$ |
$1.09614$ |
$7.24128$ |
$[0, -1, 0, -94055173, 351125729809]$ |
\(y^2=x^3-x^2-94055173x+351125729809\) |
3.4.0.a.1, 6.8.0.b.1, 21.8.0-3.a.1.2, 42.16.0-6.b.1.2 |
$[ ]$ |
9996.c2 |
9996f1 |
9996.c |
9996f |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{15} \cdot 7^{10} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$42$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$257040$ |
$2.612076$ |
$-534274048000/4146834123$ |
$1.09336$ |
$5.93669$ |
$[0, -1, 0, -704293, 863892961]$ |
\(y^2=x^3-x^2-704293x+863892961\) |
3.4.0.a.1, 6.8.0.b.1, 21.8.0-3.a.1.1, 42.16.0-6.b.1.1 |
$[ ]$ |
9996.d1 |
9996a1 |
9996.d |
9996a |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( 2^{8} \cdot 3^{15} \cdot 7^{8} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$204$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$105840$ |
$2.061295$ |
$482370434896/243931419$ |
$0.96537$ |
$5.21333$ |
$[0, -1, 0, -186020, 11030664]$ |
\(y^2=x^3-x^2-186020x+11030664\) |
204.2.0.? |
$[ ]$ |
9996.e1 |
9996d2 |
9996.e |
9996d |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( 2^{8} \cdot 3^{6} \cdot 7^{3} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$84$ |
$12$ |
$0$ |
$1.755177096$ |
$1$ |
|
$3$ |
$11520$ |
$0.990337$ |
$1609752103216/210681$ |
$0.94851$ |
$4.28776$ |
$[0, -1, 0, -10852, 438712]$ |
\(y^2=x^3-x^2-10852x+438712\) |
2.3.0.a.1, 12.6.0.g.1, 28.6.0.a.1, 84.12.0.? |
$[(-47, 918)]$ |
9996.e2 |
9996d1 |
9996.e |
9996d |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( 2^{4} \cdot 3^{3} \cdot 7^{3} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$84$ |
$12$ |
$0$ |
$3.510354193$ |
$1$ |
|
$3$ |
$5760$ |
$0.643764$ |
$8077950976/2255067$ |
$0.98358$ |
$3.41183$ |
$[0, -1, 0, -737, 5790]$ |
\(y^2=x^3-x^2-737x+5790\) |
2.3.0.a.1, 12.6.0.g.1, 28.6.0.b.1, 42.6.0.a.1, 84.12.0.? |
$[(82, 700)]$ |
9996.f1 |
9996h2 |
9996.f |
9996h |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( 2^{8} \cdot 3 \cdot 7^{10} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1428$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$117936$ |
$1.852144$ |
$40685771728/14739$ |
$0.92865$ |
$5.36740$ |
$[0, -1, 0, -298524, 62859336]$ |
\(y^2=x^3-x^2-298524x+62859336\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 204.8.0.?, 1428.16.0.? |
$[ ]$ |
9996.f2 |
9996h1 |
9996.f |
9996h |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( 2^{8} \cdot 3^{3} \cdot 7^{10} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1428$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$39312$ |
$1.302839$ |
$1722448/459$ |
$0.79249$ |
$4.27403$ |
$[0, -1, 0, -10404, -296568]$ |
\(y^2=x^3-x^2-10404x-296568\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 204.8.0.?, 1428.16.0.? |
$[ ]$ |
9996.g1 |
9996e1 |
9996.g |
9996e |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{3} \cdot 7^{10} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$714$ |
$16$ |
$0$ |
$6.109664230$ |
$1$ |
|
$2$ |
$82944$ |
$1.847889$ |
$-11632923639808/318495051$ |
$1.03083$ |
$5.14137$ |
$[0, -1, 0, -146869, -22121903]$ |
\(y^2=x^3-x^2-146869x-22121903\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 102.8.0.?, 714.16.0.? |
$[(7719, 677278)]$ |
9996.g2 |
9996e2 |
9996.g |
9996e |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3 \cdot 7^{18} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$714$ |
$16$ |
$0$ |
$18.32899269$ |
$1$ |
|
$0$ |
$248832$ |
$2.397194$ |
$1021544365555712/705905647251$ |
$1.08891$ |
$5.62227$ |
$[0, -1, 0, 652811, -89654879]$ |
\(y^2=x^3-x^2+652811x-89654879\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 102.8.0.?, 714.16.0.? |
$[(607876680/281, 15067177116509/281)]$ |
9996.h1 |
9996b1 |
9996.h |
9996b |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( 2^{8} \cdot 3^{5} \cdot 7^{8} \cdot 17^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$204$ |
$2$ |
$0$ |
$1.053771403$ |
$1$ |
|
$2$ |
$176400$ |
$2.206112$ |
$26835062456272/345025251$ |
$0.95847$ |
$5.64968$ |
$[0, -1, 0, -710124, 227993256]$ |
\(y^2=x^3-x^2-710124x+227993256\) |
204.2.0.? |
$[(425, 1666)]$ |
9996.i1 |
9996j2 |
9996.i |
9996j |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( 2^{8} \cdot 3 \cdot 7^{4} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$204$ |
$16$ |
$0$ |
$2.583832328$ |
$1$ |
|
$2$ |
$16848$ |
$0.879189$ |
$40685771728/14739$ |
$0.92865$ |
$4.09970$ |
$[0, 1, 0, -6092, -185004]$ |
\(y^2=x^3+x^2-6092x-185004\) |
3.8.0-3.a.1.1, 204.16.0.? |
$[(-45, 6)]$ |
9996.i2 |
9996j1 |
9996.i |
9996j |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( 2^{8} \cdot 3^{3} \cdot 7^{4} \cdot 17 \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$204$ |
$16$ |
$0$ |
$0.861277442$ |
$1$ |
|
$10$ |
$5616$ |
$0.329884$ |
$1722448/459$ |
$0.79249$ |
$3.00633$ |
$[0, 1, 0, -212, 804]$ |
\(y^2=x^3+x^2-212x+804\) |
3.8.0-3.a.1.2, 204.16.0.? |
$[(4, 6)]$ |
9996.j1 |
9996k1 |
9996.j |
9996k |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( 2^{8} \cdot 3^{5} \cdot 7^{2} \cdot 17^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$204$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$25200$ |
$1.233156$ |
$26835062456272/345025251$ |
$0.95847$ |
$4.38198$ |
$[0, 1, 0, -14492, -668844]$ |
\(y^2=x^3+x^2-14492x-668844\) |
204.2.0.? |
$[ ]$ |
9996.k1 |
9996p2 |
9996.k |
9996p |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( 2^{8} \cdot 3^{6} \cdot 7^{9} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$84$ |
$12$ |
$0$ |
$4.457727088$ |
$1$ |
|
$3$ |
$80640$ |
$1.963293$ |
$1609752103216/210681$ |
$0.94851$ |
$5.55546$ |
$[0, 1, 0, -531764, -149414700]$ |
\(y^2=x^3+x^2-531764x-149414700\) |
2.3.0.a.1, 12.6.0.g.1, 28.6.0.a.1, 84.12.0.? |
$[(16039, 2029188)]$ |
9996.k2 |
9996p1 |
9996.k |
9996p |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( 2^{4} \cdot 3^{3} \cdot 7^{9} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$84$ |
$12$ |
$0$ |
$2.228863544$ |
$1$ |
|
$3$ |
$40320$ |
$1.616718$ |
$8077950976/2255067$ |
$0.98358$ |
$4.67953$ |
$[0, 1, 0, -36129, -1913724]$ |
\(y^2=x^3+x^2-36129x-1913724\) |
2.3.0.a.1, 12.6.0.g.1, 28.6.0.b.1, 42.6.0.a.1, 84.12.0.? |
$[(-60, 204)]$ |
9996.l1 |
9996o1 |
9996.l |
9996o |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( 2^{4} \cdot 3 \cdot 7^{9} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1428$ |
$12$ |
$0$ |
$0.819115570$ |
$1$ |
|
$5$ |
$17280$ |
$1.168297$ |
$265327034368/297381$ |
$1.02684$ |
$4.42481$ |
$[0, 1, 0, -16529, 811656]$ |
\(y^2=x^3+x^2-16529x+811656\) |
2.3.0.a.1, 42.6.0.a.1, 68.6.0.b.1, 1428.12.0.? |
$[(135, 1029)]$ |
9996.l2 |
9996o2 |
9996.l |
9996o |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{2} \cdot 7^{12} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1428$ |
$12$ |
$0$ |
$1.638231141$ |
$1$ |
|
$3$ |
$34560$ |
$1.514870$ |
$-6940769488/18000297$ |
$0.99965$ |
$4.51498$ |
$[0, 1, 0, -12364, 1234820]$ |
\(y^2=x^3+x^2-12364x+1234820\) |
2.3.0.a.1, 68.6.0.a.1, 84.6.0.?, 1428.12.0.? |
$[(44, 882)]$ |
9996.m1 |
9996m1 |
9996.m |
9996m |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{3} \cdot 7^{8} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$0.594784596$ |
$1$ |
|
$6$ |
$13824$ |
$0.956174$ |
$17997824/22491$ |
$0.86007$ |
$3.69973$ |
$[0, 1, 0, 1699, -28449]$ |
\(y^2=x^3+x^2+1699x-28449\) |
102.2.0.? |
$[(37, 294)]$ |
9996.n1 |
9996n1 |
9996.n |
9996n |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( 2^{8} \cdot 3^{15} \cdot 7^{2} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$204$ |
$2$ |
$0$ |
$0.172075179$ |
$1$ |
|
$8$ |
$15120$ |
$1.088339$ |
$482370434896/243931419$ |
$0.96537$ |
$3.94563$ |
$[0, 1, 0, -3796, -33244]$ |
\(y^2=x^3+x^2-3796x-33244\) |
204.2.0.? |
$[(-52, 162)]$ |
9996.o1 |
9996i2 |
9996.o |
9996i |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{5} \cdot 7^{4} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$6$ |
$16$ |
$0$ |
$2.878400259$ |
$1$ |
|
$2$ |
$110160$ |
$2.188427$ |
$-1272481306550272000/5865429267$ |
$1.09614$ |
$5.97358$ |
$[0, 1, 0, -1919493, -1024238601]$ |
\(y^2=x^3+x^2-1919493x-1024238601\) |
3.8.0-3.a.1.1, 6.16.0-6.b.1.1 |
$[(2202, 73695)]$ |
9996.o2 |
9996i1 |
9996.o |
9996i |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{15} \cdot 7^{4} \cdot 17^{2} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$6$ |
$16$ |
$0$ |
$0.959466753$ |
$1$ |
|
$10$ |
$36720$ |
$1.639120$ |
$-534274048000/4146834123$ |
$1.09336$ |
$4.66898$ |
$[0, 1, 0, -14373, -2522745]$ |
\(y^2=x^3+x^2-14373x-2522745\) |
3.8.0-3.a.1.2, 6.16.0-6.b.1.2 |
$[(177, 714)]$ |
9996.p1 |
9996l1 |
9996.p |
9996l |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{11} \cdot 7^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$0.146833024$ |
$1$ |
|
$8$ |
$38016$ |
$1.574856$ |
$-1841198792704/3011499$ |
$1.22809$ |
$4.93650$ |
$[0, 1, 0, -79445, 8604567]$ |
\(y^2=x^3+x^2-79445x+8604567\) |
102.2.0.? |
$[(121, 882)]$ |
9996.q1 |
9996q1 |
9996.q |
9996q |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{9} \cdot 7^{8} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$2.138284430$ |
$1$ |
|
$2$ |
$1451520$ |
$3.295959$ |
$-6434900743458429657088/395758108932291$ |
$1.06283$ |
$7.32217$ |
$[0, 1, 0, -120563389, -509599053937]$ |
\(y^2=x^3+x^2-120563389x-509599053937\) |
102.2.0.? |
$[(13946, 722211)]$ |