Learn more

Refine search


Results (48 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
98553.a1 98553.a \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $0.566213786$ $[0, -1, 1, -5174, 221276]$ \(y^2+y=x^3-x^2-5174x+221276\) 10374.2.0.? $[(127, 1263), (109/2, 2523/2)]$
98553.b1 98553.b \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $3.469172534$ $[0, -1, 1, 916820, 1085332404]$ \(y^2+y=x^3-x^2+916820x+1085332404\) 182.2.0.? $[(-521, 21586)]$
98553.c1 98553.c \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $7.295028917$ $[1, 1, 1, -4733259, 3961611552]$ \(y^2+xy+y=x^3+x^2-4733259x+3961611552\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 546.6.0.?, 988.12.0.?, $\ldots$ $[(2249, 67419)]$
98553.c2 98553.c \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $7.295028917$ $[1, 1, 1, -744209, -163835800]$ \(y^2+xy+y=x^3+x^2-744209x-163835800\) 2.3.0.a.1, 4.12.0-4.c.1.2, 988.24.0.?, 2184.24.0.?, 3192.24.0.?, $\ldots$ $[(-20481/7, 3030523/7)]$
98553.c3 98553.c \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.647514458$ $[1, 1, 1, -298374, 60686706]$ \(y^2+xy+y=x^3+x^2-298374x+60686706\) 2.6.0.a.1, 4.12.0-2.a.1.1, 988.24.0.?, 1092.24.0.?, 1596.24.0.?, $\ldots$ $[(-278, 11195)]$
98553.c4 98553.c \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $1$ $\Z/4\Z$ $7.295028917$ $[1, 1, 1, 6671, 3338246]$ \(y^2+xy+y=x^3+x^2+6671x+3338246\) 2.3.0.a.1, 4.12.0-4.c.1.1, 798.6.0.?, 1596.24.0.?, 1976.24.0.?, $\ldots$ $[(22626/7, 3437680/7)]$
98553.d1 98553.d \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $0.749410647$ $[1, 1, 1, -188, -1726]$ \(y^2+xy+y=x^3+x^2-188x-1726\) 52.2.0.a.1 $[(36, 181), (87/2, 479/2)]$
98553.e1 98553.e \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 45298, -12250456]$ \(y^2+xy+y=x^3+x^2+45298x-12250456\) 52.2.0.a.1 $[ ]$
98553.f1 98553.f \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $3.945404773$ $[1, 0, 0, 32968498, -20020379079]$ \(y^2+xy=x^3+32968498x-20020379079\) 84.2.0.? $[(601, 2995)]$
98553.g1 98553.g \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $6.709263999$ $[1, 0, 0, 340235, -198026836]$ \(y^2+xy=x^3+340235x-198026836\) 182.2.0.? $[(2611, 134680)]$
98553.h1 98553.h \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.545504844$ $[1, 0, 0, -1912029040845, 1017952646559313374]$ \(y^2+xy=x^3-1912029040845x+1017952646559313374\) 84.2.0.? $[(755685, 67463613)]$
98553.i1 98553.i \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $2$ $\Z/2\Z$ $2.397169969$ $[1, 0, 0, -359022, 64325943]$ \(y^2+xy=x^3-359022x+64325943\) 2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.1, 76.12.0.?, 104.12.0.?, $\ldots$ $[(-597, 8421), (486, 1923)]$
98553.i2 98553.i \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $9.588679878$ $[1, 0, 0, -118957, -14943520]$ \(y^2+xy=x^3-118957x-14943520\) 2.6.0.a.1, 28.12.0-2.a.1.1, 52.12.0.a.1, 76.12.0.?, 364.24.0.?, $\ldots$ $[(-173, 769), (464, 5228)]$
98553.i3 98553.i \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $2$ $\Z/2\Z$ $38.35471951$ $[1, 0, 0, -117152, -15443505]$ \(y^2+xy=x^3-117152x-15443505\) 2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.2, 104.12.0.?, 152.12.0.?, $\ldots$ $[(7243/3, 536953/3), (1402, 50059)]$
98553.i4 98553.i \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $2$ $\Z/2\Z$ $9.588679878$ $[1, 0, 0, 92228, -62206723]$ \(y^2+xy=x^3+92228x-62206723\) 2.3.0.a.1, 4.6.0.c.1, 52.12.0.h.1, 56.12.0-4.c.1.5, 76.12.0.?, $\ldots$ $[(353, 3614), (50893, 11455978)]$
98553.j1 98553.j \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.497062540$ $[1, 0, 0, -74, 2127]$ \(y^2+xy=x^3-74x+2127\) 182.2.0.? $[(-11, 46)]$
98553.k1 98553.k \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $4.343830402$ $[0, -1, 1, -4676875, 3894565092]$ \(y^2+y=x^3-x^2-4676875x+3894565092\) 10374.2.0.? $[(1248, 180), (1970, 48193)]$
98553.l1 98553.l \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $15.83943269$ $[0, -1, 1, -3578713, 4048876347]$ \(y^2+y=x^3-x^2-3578713x+4048876347\) 3.4.0.a.1, 9.12.0.a.1, 57.8.0-3.a.1.2, 171.24.0.?, 546.8.0.?, $\ldots$ $[(-4635183/47, 4995326466/47)]$
98553.l2 98553.l \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $15.83943269$ $[0, -1, 1, -123943, -16863771]$ \(y^2+y=x^3-x^2-123943x-16863771\) 3.4.0.a.1, 9.12.0.a.1, 57.8.0-3.a.1.1, 171.24.0.?, 546.8.0.?, $\ldots$ $[(5284629/106, 6375824975/106)]$
98553.l3 98553.l \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $5.279810898$ $[0, -1, 1, 363407, -90053994]$ \(y^2+y=x^3-x^2+363407x-90053994\) 3.12.0.a.1, 57.24.0-3.a.1.1, 546.24.0.?, 819.36.0.?, 1638.72.0.?, $\ldots$ $[(228, 2145)]$
98553.m1 98553.m \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $2.414071201$ $[0, -1, 1, 13, 59]$ \(y^2+y=x^3-x^2+13x+59\) 10374.2.0.? $[(13, 47), (1, 8)]$
98553.n1 98553.n \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.738198157$ $[0, -1, 1, -1659, 26678]$ \(y^2+y=x^3-x^2-1659x+26678\) 3.4.0.a.1, 57.8.0-3.a.1.2, 182.2.0.?, 546.8.0.?, 10374.16.0.? $[(24, 10)]$
98553.n2 98553.n \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $2.214594471$ $[0, -1, 1, 51, 173]$ \(y^2+y=x^3-x^2+51x+173\) 3.4.0.a.1, 57.8.0-3.a.1.1, 182.2.0.?, 546.8.0.?, 10374.16.0.? $[(21/2, 185/2)]$
98553.o1 98553.o \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 4573, -434086]$ \(y^2+y=x^3+x^2+4573x-434086\) 10374.2.0.? $[ ]$
98553.p1 98553.p \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -599019, -179392255]$ \(y^2+y=x^3+x^2-599019x-179392255\) 3.8.0-3.a.1.1, 182.2.0.?, 546.16.0.? $[ ]$
98553.p2 98553.p \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $0$ $\Z/3\Z$ $1$ $[0, 1, 1, 18291, -1298320]$ \(y^2+y=x^3+x^2+18291x-1298320\) 3.8.0-3.a.1.2, 182.2.0.?, 546.16.0.? $[ ]$
98553.q1 98553.q \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 91326, 2957301]$ \(y^2+xy=x^3+x^2+91326x+2957301\) 84.2.0.? $[ ]$
98553.r1 98553.r \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -12558836, -17135771121]$ \(y^2+xy=x^3+x^2-12558836x-17135771121\) 2.3.0.a.1, 4.12.0-4.c.1.2, 266.6.0.?, 532.24.0.?, 2184.24.0.?, $\ldots$ $[ ]$
98553.r2 98553.r \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -795651, -260305920]$ \(y^2+xy=x^3+x^2-795651x-260305920\) 2.6.0.a.1, 4.12.0-2.a.1.1, 532.24.0.?, 1092.24.0.?, 2964.24.0.?, $\ldots$ $[ ]$
98553.r3 98553.r \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -144046, 15844279]$ \(y^2+xy=x^3+x^2-144046x+15844279\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 532.12.0.?, 546.6.0.?, $\ldots$ $[ ]$
98553.r4 98553.r \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $0$ $\Z/4\Z$ $1$ $[1, 1, 0, 541854, -1045421355]$ \(y^2+xy=x^3+x^2+541854x-1045421355\) 2.3.0.a.1, 4.12.0-4.c.1.1, 1064.24.0.?, 2184.24.0.?, 2964.24.0.?, $\ldots$ $[ ]$
98553.s1 98553.s \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -607931, 180691680]$ \(y^2+xy=x^3+x^2-607931x+180691680\) 2.3.0.a.1, 12.6.0.c.1, 3458.6.0.?, 20748.12.0.? $[ ]$
98553.s2 98553.s \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -169316, 436579671]$ \(y^2+xy=x^3+x^2-169316x+436579671\) 2.3.0.a.1, 6.6.0.a.1, 6916.6.0.?, 20748.12.0.? $[ ]$
98553.t1 98553.t \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -964238, 409597809]$ \(y^2+xy=x^3+x^2-964238x+409597809\) 6916.2.0.? $[ ]$
98553.u1 98553.u \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $0.596808494$ $[1, 1, 0, 943, 29268]$ \(y^2+xy=x^3+x^2+943x+29268\) 182.2.0.? $[(4, 180), (368, 6914)]$
98553.v1 98553.v \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -7227, -899262]$ \(y^2+xy=x^3+x^2-7227x-899262\) 6916.2.0.? $[ ]$
98553.w1 98553.w \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -5296479337, -148413463010882]$ \(y^2+xy=x^3+x^2-5296479337x-148413463010882\) 84.2.0.? $[ ]$
98553.x1 98553.x \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $15.18086634$ $[1, 1, 0, -9754, -19505]$ \(y^2+xy=x^3+x^2-9754x-19505\) 2.3.0.a.1, 12.6.0.c.1, 3458.6.0.?, 20748.12.0.? $[(-8836955/412, 43228599715/412)]$
98553.x2 98553.x \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $7.590433172$ $[1, 1, 0, 38981, -107228]$ \(y^2+xy=x^3+x^2+38981x-107228\) 2.3.0.a.1, 6.6.0.a.1, 6916.6.0.?, 20748.12.0.? $[(86816/11, 26071174/11)]$
98553.y1 98553.y \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -26721, -14642532]$ \(y^2+xy=x^3+x^2-26721x-14642532\) 182.2.0.? $[ ]$
98553.z1 98553.z \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $5.004096852$ $[1, 0, 1, -67876, 11294411]$ \(y^2+xy+y=x^3-67876x+11294411\) 52.2.0.a.1 $[(-111, 4234)]$
98553.ba1 98553.ba \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.681779046$ $[1, 0, 1, 125, 1799]$ \(y^2+xy+y=x^3+125x+1799\) 52.2.0.a.1 $[(31, 173)]$
98553.bb1 98553.bb \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $5.315509249$ $[1, 0, 1, -2302105, 1343724473]$ \(y^2+xy+y=x^3-2302105x+1343724473\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 28.12.0.h.1, 76.12.0.?, $\ldots$ $[(-497, 48881)]$
98553.bb2 98553.bb \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $10.63101849$ $[1, 0, 1, -166790, 13850291]$ \(y^2+xy+y=x^3-166790x+13850291\) 2.6.0.a.1, 12.12.0-2.a.1.1, 28.12.0.a.1, 76.12.0.?, 84.24.0.?, $\ldots$ $[(-254289/43, 470336320/43)]$
98553.bb3 98553.bb \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $5.315509249$ $[1, 0, 1, -78345, -8296337]$ \(y^2+xy+y=x^3-78345x-8296337\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 56.12.0.ba.1, 76.12.0.?, $\ldots$ $[(102037/12, 28919963/12)]$
98553.bb4 98553.bb \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $21.26203699$ $[1, 0, 1, 553405, 101714081]$ \(y^2+xy+y=x^3+553405x+101714081\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 56.12.0.ba.1, 152.12.0.?, $\ldots$ $[(18857320619/4930, 3739332361039287/4930)]$
98553.bc1 98553.bc \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $19.20153792$ $[0, 1, 1, -225384, -42986239]$ \(y^2+y=x^3+x^2-225384x-42986239\) 10374.2.0.? $[(369235077/554, 6426383397155/554)]$
98553.bd1 98553.bd \( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -9506, -411343]$ \(y^2+y=x^3+x^2-9506x-411343\) 182.2.0.? $[ ]$
  displayed columns for results