| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 98553.a1 |
98553r1 |
98553.a |
98553r |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3 \cdot 7^{3} \cdot 13 \cdot 19^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10374$ |
$2$ |
$0$ |
$0.566213786$ |
$1$ |
|
$14$ |
$259200$ |
$1.208035$ |
$-325660672/254163$ |
$0.77028$ |
$3.31542$ |
$[0, -1, 1, -5174, 221276]$ |
\(y^2+y=x^3-x^2-5174x+221276\) |
10374.2.0.? |
$[(127, 1263), (109/2, 2523/2)]$ |
$1$ |
| 98553.b1 |
98553i1 |
98553.b |
98553i |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{8} \cdot 7^{7} \cdot 13^{3} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$3.469172534$ |
$1$ |
|
$2$ |
$4826304$ |
$2.662731$ |
$1811564780171264/11870974573731$ |
$1.04721$ |
$4.79495$ |
$[0, -1, 1, 916820, 1085332404]$ |
\(y^2+y=x^3-x^2+916820x+1085332404\) |
182.2.0.? |
$[(-521, 21586)]$ |
$1$ |
| 98553.c1 |
98553h4 |
98553.c |
98553h |
$4$ |
$4$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( 3^{3} \cdot 7 \cdot 13 \cdot 19^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$41496$ |
$48$ |
$0$ |
$7.295028917$ |
$1$ |
|
$2$ |
$1935360$ |
$2.381844$ |
$249277408000169977/320198697$ |
$0.93969$ |
$5.02020$ |
$[1, 1, 1, -4733259, 3961611552]$ |
\(y^2+xy+y=x^3+x^2-4733259x+3961611552\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 546.6.0.?, 988.12.0.?, $\ldots$ |
$[(2249, 67419)]$ |
$1$ |
| 98553.c2 |
98553h3 |
98553.c |
98553h |
$4$ |
$4$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( 3^{12} \cdot 7^{4} \cdot 13 \cdot 19^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$41496$ |
$48$ |
$0$ |
$7.295028917$ |
$1$ |
|
$0$ |
$1935360$ |
$2.381844$ |
$968917714969177/315169490727$ |
$0.91798$ |
$4.53751$ |
$[1, 1, 1, -744209, -163835800]$ |
\(y^2+xy+y=x^3+x^2-744209x-163835800\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 988.24.0.?, 2184.24.0.?, 3192.24.0.?, $\ldots$ |
$[(-20481/7, 3030523/7)]$ |
$1$ |
| 98553.c3 |
98553h2 |
98553.c |
98553h |
$4$ |
$4$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( 3^{6} \cdot 7^{2} \cdot 13^{2} \cdot 19^{8} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$20748$ |
$48$ |
$0$ |
$3.647514458$ |
$1$ |
|
$6$ |
$967680$ |
$2.035267$ |
$62443196514217/2179302489$ |
$0.89011$ |
$4.29904$ |
$[1, 1, 1, -298374, 60686706]$ |
\(y^2+xy+y=x^3+x^2-298374x+60686706\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 988.24.0.?, 1092.24.0.?, 1596.24.0.?, $\ldots$ |
$[(-278, 11195)]$ |
$1$ |
| 98553.c4 |
98553h1 |
98553.c |
98553h |
$4$ |
$4$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{3} \cdot 7 \cdot 13^{4} \cdot 19^{7} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$41496$ |
$48$ |
$0$ |
$7.295028917$ |
$1$ |
|
$3$ |
$483840$ |
$1.688694$ |
$697864103/102562551$ |
$0.89364$ |
$3.78866$ |
$[1, 1, 1, 6671, 3338246]$ |
\(y^2+xy+y=x^3+x^2+6671x+3338246\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 798.6.0.?, 1596.24.0.?, 1976.24.0.?, $\ldots$ |
$[(22626/7, 3437680/7)]$ |
$1$ |
| 98553.d1 |
98553f1 |
98553.d |
98553f |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{2} \cdot 7^{2} \cdot 13 \cdot 19^{4} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$0.749410647$ |
$1$ |
|
$20$ |
$35136$ |
$0.398183$ |
$-5640625/5733$ |
$0.86534$ |
$2.46445$ |
$[1, 1, 1, -188, -1726]$ |
\(y^2+xy+y=x^3+x^2-188x-1726\) |
52.2.0.a.1 |
$[(36, 181), (87/2, 479/2)]$ |
$1$ |
| 98553.e1 |
98553j1 |
98553.e |
98553j |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{8} \cdot 7^{2} \cdot 13 \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$656640$ |
$1.915096$ |
$605245247/4179357$ |
$0.86273$ |
$4.01522$ |
$[1, 1, 1, 45298, -12250456]$ |
\(y^2+xy+y=x^3+x^2+45298x-12250456\) |
52.2.0.a.1 |
$[ ]$ |
$1$ |
| 98553.f1 |
98553v1 |
98553.f |
98553v |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{5} \cdot 7^{3} \cdot 13^{6} \cdot 19^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$84$ |
$2$ |
$0$ |
$3.945404773$ |
$1$ |
|
$4$ |
$24377760$ |
$3.369503$ |
$646375946842727/402309703341$ |
$0.99314$ |
$5.52660$ |
$[1, 0, 0, 32968498, -20020379079]$ |
\(y^2+xy=x^3+32968498x-20020379079\) |
84.2.0.? |
$[(601, 2995)]$ |
$1$ |
| 98553.g1 |
98553x1 |
98553.g |
98553x |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{2} \cdot 7^{3} \cdot 13^{5} \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$6.709263999$ |
$1$ |
|
$2$ |
$2216160$ |
$2.383724$ |
$256467174479/1146181491$ |
$0.91013$ |
$4.49902$ |
$[1, 0, 0, 340235, -198026836]$ |
\(y^2+xy=x^3+340235x-198026836\) |
182.2.0.? |
$[(2611, 134680)]$ |
$1$ |
| 98553.h1 |
98553y1 |
98553.h |
98553y |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{11} \cdot 7^{21} \cdot 13^{2} \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$84$ |
$2$ |
$0$ |
$1.545504844$ |
$1$ |
|
$2$ |
$1740572064$ |
$5.770790$ |
$-45517495433750736788559001281841/16721658387224695525976901$ |
$1.05628$ |
$8.38832$ |
$[1, 0, 0, -1912029040845, 1017952646559313374]$ |
\(y^2+xy=x^3-1912029040845x+1017952646559313374\) |
84.2.0.? |
$[(755685, 67463613)]$ |
$1$ |
| 98553.i1 |
98553z4 |
98553.i |
98553z |
$4$ |
$4$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( 3^{8} \cdot 7 \cdot 13^{4} \cdot 19^{7} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$13832$ |
$48$ |
$0$ |
$2.397169969$ |
$1$ |
|
$14$ |
$1658880$ |
$2.179554$ |
$108784086144553/24922699893$ |
$0.89957$ |
$4.34732$ |
$[1, 0, 0, -359022, 64325943]$ |
\(y^2+xy=x^3-359022x+64325943\) |
2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.1, 76.12.0.?, 104.12.0.?, $\ldots$ |
$[(-597, 8421), (486, 1923)]$ |
$1$ |
| 98553.i2 |
98553z2 |
98553.i |
98553z |
$4$ |
$4$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( 3^{4} \cdot 7^{2} \cdot 13^{2} \cdot 19^{8} \) |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$6916$ |
$48$ |
$0$ |
$9.588679878$ |
$1$ |
|
$14$ |
$829440$ |
$1.832979$ |
$3957057343513/242144721$ |
$0.96225$ |
$4.05912$ |
$[1, 0, 0, -118957, -14943520]$ |
\(y^2+xy=x^3-118957x-14943520\) |
2.6.0.a.1, 28.12.0-2.a.1.1, 52.12.0.a.1, 76.12.0.?, 364.24.0.?, $\ldots$ |
$[(-173, 769), (464, 5228)]$ |
$1$ |
| 98553.i3 |
98553z1 |
98553.i |
98553z |
$4$ |
$4$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( 3^{2} \cdot 7 \cdot 13 \cdot 19^{7} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$13832$ |
$48$ |
$0$ |
$38.35471951$ |
$1$ |
|
$3$ |
$414720$ |
$1.486404$ |
$3779648905033/15561$ |
$0.96017$ |
$4.05513$ |
$[1, 0, 0, -117152, -15443505]$ |
\(y^2+xy=x^3-117152x-15443505\) |
2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.2, 104.12.0.?, 152.12.0.?, $\ldots$ |
$[(7243/3, 536953/3), (1402, 50059)]$ |
$1$ |
| 98553.i4 |
98553z3 |
98553.i |
98553z |
$4$ |
$4$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{2} \cdot 7^{4} \cdot 13 \cdot 19^{10} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$13832$ |
$48$ |
$0$ |
$9.588679878$ |
$1$ |
|
$8$ |
$1658880$ |
$2.179554$ |
$1844124275447/36609384357$ |
$0.92016$ |
$4.29760$ |
$[1, 0, 0, 92228, -62206723]$ |
\(y^2+xy=x^3+92228x-62206723\) |
2.3.0.a.1, 4.6.0.c.1, 52.12.0.h.1, 56.12.0-4.c.1.5, 76.12.0.?, $\ldots$ |
$[(353, 3614), (50893, 11455978)]$ |
$1$ |
| 98553.j1 |
98553u1 |
98553.j |
98553u |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{10} \cdot 7 \cdot 13 \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$0.497062540$ |
$1$ |
|
$4$ |
$50400$ |
$0.462232$ |
$-124244857/5373459$ |
$0.88461$ |
$2.50939$ |
$[1, 0, 0, -74, 2127]$ |
\(y^2+xy=x^3-74x+2127\) |
182.2.0.? |
$[(-11, 46)]$ |
$1$ |
| 98553.k1 |
98553a1 |
98553.k |
98553a |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3 \cdot 7^{5} \cdot 13^{3} \cdot 19^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10374$ |
$2$ |
$0$ |
$4.343830402$ |
$1$ |
|
$8$ |
$2678400$ |
$2.428055$ |
$-240474752802390016/2104723803$ |
$0.96787$ |
$5.01707$ |
$[0, -1, 1, -4676875, 3894565092]$ |
\(y^2+y=x^3-x^2-4676875x+3894565092\) |
10374.2.0.? |
$[(1248, 180), (1970, 48193)]$ |
$1$ |
| 98553.l1 |
98553k3 |
98553.l |
98553k |
$3$ |
$9$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3 \cdot 7 \cdot 13 \cdot 19^{15} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$31122$ |
$144$ |
$3$ |
$15.83943269$ |
$1$ |
|
$0$ |
$4199040$ |
$2.846088$ |
$-107741456072704000/88093741493667$ |
$0.99472$ |
$5.02385$ |
$[0, -1, 1, -3578713, 4048876347]$ |
\(y^2+y=x^3-x^2-3578713x+4048876347\) |
3.4.0.a.1, 9.12.0.a.1, 57.8.0-3.a.1.2, 171.24.0.?, 546.8.0.?, $\ldots$ |
$[(-4635183/47, 4995326466/47)]$ |
$1$ |
| 98553.l2 |
98553k1 |
98553.l |
98553k |
$3$ |
$9$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{9} \cdot 7 \cdot 13 \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$31122$ |
$144$ |
$3$ |
$15.83943269$ |
$1$ |
|
$0$ |
$466560$ |
$1.747478$ |
$-4475809792000/34031907$ |
$0.89282$ |
$4.07097$ |
$[0, -1, 1, -123943, -16863771]$ |
\(y^2+y=x^3-x^2-123943x-16863771\) |
3.4.0.a.1, 9.12.0.a.1, 57.8.0-3.a.1.1, 171.24.0.?, 546.8.0.?, $\ldots$ |
$[(5284629/106, 6375824975/106)]$ |
$1$ |
| 98553.l3 |
98553k2 |
98553.l |
98553k |
$3$ |
$9$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{3} \cdot 7^{3} \cdot 13^{3} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$31122$ |
$144$ |
$3$ |
$5.279810898$ |
$1$ |
|
$2$ |
$1399680$ |
$2.296783$ |
$112818618368000/139556074203$ |
$0.96406$ |
$4.36169$ |
$[0, -1, 1, 363407, -90053994]$ |
\(y^2+y=x^3-x^2+363407x-90053994\) |
3.12.0.a.1, 57.24.0-3.a.1.1, 546.24.0.?, 819.36.0.?, 1638.72.0.?, $\ldots$ |
$[(228, 2145)]$ |
$1$ |
| 98553.m1 |
98553c1 |
98553.m |
98553c |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3 \cdot 7 \cdot 13 \cdot 19^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10374$ |
$2$ |
$0$ |
$2.414071201$ |
$1$ |
|
$4$ |
$11200$ |
$-0.115058$ |
$32768/273$ |
$0.96304$ |
$1.89814$ |
$[0, -1, 1, 13, 59]$ |
\(y^2+y=x^3-x^2+13x+59\) |
10374.2.0.? |
$[(13, 47), (1, 8)]$ |
$1$ |
| 98553.n1 |
98553l2 |
98553.n |
98553l |
$2$ |
$3$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{2} \cdot 7^{3} \cdot 13^{3} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10374$ |
$16$ |
$0$ |
$0.738198157$ |
$1$ |
|
$4$ |
$81648$ |
$0.650298$ |
$-1399643471872/6782139$ |
$0.91495$ |
$2.94516$ |
$[0, -1, 1, -1659, 26678]$ |
\(y^2+y=x^3-x^2-1659x+26678\) |
3.4.0.a.1, 57.8.0-3.a.1.2, 182.2.0.?, 546.8.0.?, 10374.16.0.? |
$[(24, 10)]$ |
$1$ |
| 98553.n2 |
98553l1 |
98553.n |
98553l |
$2$ |
$3$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{6} \cdot 7 \cdot 13 \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10374$ |
$16$ |
$0$ |
$2.214594471$ |
$1$ |
|
$0$ |
$27216$ |
$0.100991$ |
$39845888/66339$ |
$0.88700$ |
$2.08891$ |
$[0, -1, 1, 51, 173]$ |
\(y^2+y=x^3-x^2+51x+173\) |
3.4.0.a.1, 57.8.0-3.a.1.1, 182.2.0.?, 546.8.0.?, 10374.16.0.? |
$[(21/2, 185/2)]$ |
$1$ |
| 98553.o1 |
98553s1 |
98553.o |
98553s |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3 \cdot 7 \cdot 13 \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10374$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$212800$ |
$1.357162$ |
$32768/273$ |
$0.96304$ |
$3.43459$ |
$[0, 1, 1, 4573, -434086]$ |
\(y^2+y=x^3+x^2+4573x-434086\) |
10374.2.0.? |
$[ ]$ |
$1$ |
| 98553.p1 |
98553bb2 |
98553.p |
98553bb |
$2$ |
$3$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{2} \cdot 7^{3} \cdot 13^{3} \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$546$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1551312$ |
$2.122517$ |
$-1399643471872/6782139$ |
$0.91495$ |
$4.48161$ |
$[0, 1, 1, -599019, -179392255]$ |
\(y^2+y=x^3+x^2-599019x-179392255\) |
3.8.0-3.a.1.1, 182.2.0.?, 546.16.0.? |
$[ ]$ |
$1$ |
| 98553.p2 |
98553bb1 |
98553.p |
98553bb |
$2$ |
$3$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{6} \cdot 7 \cdot 13 \cdot 19^{8} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$546$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$2$ |
$517104$ |
$1.573212$ |
$39845888/66339$ |
$0.88700$ |
$3.62536$ |
$[0, 1, 1, 18291, -1298320]$ |
\(y^2+y=x^3+x^2+18291x-1298320\) |
3.8.0-3.a.1.2, 182.2.0.?, 546.16.0.? |
$[ ]$ |
$1$ |
| 98553.q1 |
98553e1 |
98553.q |
98553e |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{5} \cdot 7^{3} \cdot 13^{6} \cdot 19^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$84$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1283040$ |
$1.897282$ |
$646375946842727/402309703341$ |
$0.99314$ |
$3.99015$ |
$[1, 1, 0, 91326, 2957301]$ |
\(y^2+xy=x^3+x^2+91326x+2957301\) |
84.2.0.? |
$[ ]$ |
$1$ |
| 98553.r1 |
98553q4 |
98553.r |
98553q |
$4$ |
$4$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( 3^{4} \cdot 7^{3} \cdot 13^{4} \cdot 19^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$41496$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4147200$ |
$2.648899$ |
$4656400509904241617/15076694997$ |
$0.95378$ |
$5.27479$ |
$[1, 1, 0, -12558836, -17135771121]$ |
\(y^2+xy=x^3+x^2-12558836x-17135771121\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 266.6.0.?, 532.24.0.?, 2184.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 98553.r2 |
98553q2 |
98553.r |
98553q |
$4$ |
$4$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( 3^{2} \cdot 7^{6} \cdot 13^{2} \cdot 19^{8} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$20748$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$2073600$ |
$2.302326$ |
$1184052061112257/64598830569$ |
$0.91047$ |
$4.55495$ |
$[1, 1, 0, -795651, -260305920]$ |
\(y^2+xy=x^3+x^2-795651x-260305920\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 532.24.0.?, 1092.24.0.?, 2964.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 98553.r3 |
98553q1 |
98553.r |
98553q |
$4$ |
$4$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( 3 \cdot 7^{3} \cdot 13 \cdot 19^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$41496$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1036800$ |
$1.955753$ |
$7026036894577/1743304017$ |
$0.87991$ |
$4.10905$ |
$[1, 1, 0, -144046, 15844279]$ |
\(y^2+xy=x^3+x^2-144046x+15844279\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 532.12.0.?, 546.6.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 98553.r4 |
98553q3 |
98553.r |
98553q |
$4$ |
$4$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3 \cdot 7^{12} \cdot 13 \cdot 19^{7} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$41496$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$2$ |
$4147200$ |
$2.648899$ |
$373979421247823/10256393815941$ |
$0.95618$ |
$4.78842$ |
$[1, 1, 0, 541854, -1045421355]$ |
\(y^2+xy=x^3+x^2+541854x-1045421355\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 1064.24.0.?, 2184.24.0.?, 2964.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 98553.s1 |
98553p1 |
98553.s |
98553p |
$2$ |
$2$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( 3^{10} \cdot 7^{3} \cdot 13 \cdot 19^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$20748$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1036800$ |
$2.153965$ |
$528160711369537/5002690329$ |
$0.90427$ |
$4.48474$ |
$[1, 1, 0, -607931, 180691680]$ |
\(y^2+xy=x^3+x^2-607931x+180691680\) |
2.3.0.a.1, 12.6.0.c.1, 3458.6.0.?, 20748.12.0.? |
$[ ]$ |
$1$ |
| 98553.s2 |
98553p2 |
98553.s |
98553p |
$2$ |
$2$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{5} \cdot 7^{6} \cdot 13^{2} \cdot 19^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$20748$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2073600$ |
$2.500538$ |
$-11410380159697/1744168425363$ |
$0.96102$ |
$4.63653$ |
$[1, 1, 0, -169316, 436579671]$ |
\(y^2+xy=x^3+x^2-169316x+436579671\) |
2.3.0.a.1, 6.6.0.a.1, 6916.6.0.?, 20748.12.0.? |
$[ ]$ |
$1$ |
| 98553.t1 |
98553b1 |
98553.t |
98553b |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{8} \cdot 7 \cdot 13^{5} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6916$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1843200$ |
$2.409901$ |
$-2107441550633329/323995098609$ |
$0.91621$ |
$4.62557$ |
$[1, 1, 0, -964238, 409597809]$ |
\(y^2+xy=x^3+x^2-964238x+409597809\) |
6916.2.0.? |
$[ ]$ |
$1$ |
| 98553.u1 |
98553m1 |
98553.u |
98553m |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{2} \cdot 7^{3} \cdot 13^{5} \cdot 19^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$0.596808494$ |
$1$ |
|
$8$ |
$116640$ |
$0.911504$ |
$256467174479/1146181491$ |
$0.91013$ |
$2.96257$ |
$[1, 1, 0, 943, 29268]$ |
\(y^2+xy=x^3+x^2+943x+29268\) |
182.2.0.? |
$[(4, 180), (368, 6914)]$ |
$1$ |
| 98553.v1 |
98553o1 |
98553.v |
98553o |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{4} \cdot 7^{3} \cdot 13 \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6916$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$414720$ |
$1.466946$ |
$-887503681/6862401$ |
$0.95695$ |
$3.56008$ |
$[1, 1, 0, -7227, -899262]$ |
\(y^2+xy=x^3+x^2-7227x-899262\) |
6916.2.0.? |
$[ ]$ |
$1$ |
| 98553.w1 |
98553n1 |
98553.w |
98553n |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{11} \cdot 7^{21} \cdot 13^{2} \cdot 19^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$84$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$91609056$ |
$4.298569$ |
$-45517495433750736788559001281841/16721658387224695525976901$ |
$1.05628$ |
$6.85187$ |
$[1, 1, 0, -5296479337, -148413463010882]$ |
\(y^2+xy=x^3+x^2-5296479337x-148413463010882\) |
84.2.0.? |
$[ ]$ |
$1$ |
| 98553.x1 |
98553g1 |
98553.x |
98553g |
$2$ |
$2$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( 3^{6} \cdot 7 \cdot 13 \cdot 19^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$20748$ |
$12$ |
$0$ |
$15.18086634$ |
$1$ |
|
$1$ |
$276480$ |
$1.332306$ |
$2181825073/1260441$ |
$0.89643$ |
$3.40658$ |
$[1, 1, 0, -9754, -19505]$ |
\(y^2+xy=x^3+x^2-9754x-19505\) |
2.3.0.a.1, 12.6.0.c.1, 3458.6.0.?, 20748.12.0.? |
$[(-8836955/412, 43228599715/412)]$ |
$1$ |
| 98553.x2 |
98553g2 |
98553.x |
98553g |
$2$ |
$2$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{3} \cdot 7^{2} \cdot 13^{2} \cdot 19^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$20748$ |
$12$ |
$0$ |
$7.590433172$ |
$1$ |
|
$0$ |
$552960$ |
$1.678881$ |
$139233463487/80714907$ |
$0.93476$ |
$3.76802$ |
$[1, 1, 0, 38981, -107228]$ |
\(y^2+xy=x^3+x^2+38981x-107228\) |
2.3.0.a.1, 6.6.0.a.1, 6916.6.0.?, 20748.12.0.? |
$[(86816/11, 26071174/11)]$ |
$1$ |
| 98553.y1 |
98553d1 |
98553.y |
98553d |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{10} \cdot 7 \cdot 13 \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$957600$ |
$1.934452$ |
$-124244857/5373459$ |
$0.88461$ |
$4.04584$ |
$[1, 1, 0, -26721, -14642532]$ |
\(y^2+xy=x^3+x^2-26721x-14642532\) |
182.2.0.? |
$[ ]$ |
$1$ |
| 98553.z1 |
98553t1 |
98553.z |
98553t |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{2} \cdot 7^{2} \cdot 13 \cdot 19^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$5.004096852$ |
$1$ |
|
$2$ |
$667584$ |
$1.870403$ |
$-5640625/5733$ |
$0.86534$ |
$4.00090$ |
$[1, 0, 1, -67876, 11294411]$ |
\(y^2+xy+y=x^3-67876x+11294411\) |
52.2.0.a.1 |
$[(-111, 4234)]$ |
$1$ |
| 98553.ba1 |
98553bd1 |
98553.ba |
98553bd |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{8} \cdot 7^{2} \cdot 13 \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$0.681779046$ |
$1$ |
|
$2$ |
$34560$ |
$0.442877$ |
$605245247/4179357$ |
$0.86273$ |
$2.47877$ |
$[1, 0, 1, 125, 1799]$ |
\(y^2+xy+y=x^3+125x+1799\) |
52.2.0.a.1 |
$[(31, 173)]$ |
$1$ |
| 98553.bb1 |
98553bc4 |
98553.bb |
98553bc |
$4$ |
$4$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( 3^{4} \cdot 7 \cdot 13^{2} \cdot 19^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3192$ |
$48$ |
$0$ |
$5.315509249$ |
$1$ |
|
$2$ |
$1658880$ |
$2.369064$ |
$28679872714374673/12487749183$ |
$0.92821$ |
$4.83214$ |
$[1, 0, 1, -2302105, 1343724473]$ |
\(y^2+xy+y=x^3-2302105x+1343724473\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 28.12.0.h.1, 76.12.0.?, $\ldots$ |
$[(-497, 48881)]$ |
$1$ |
| 98553.bb2 |
98553bc2 |
98553.bb |
98553bc |
$4$ |
$4$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( 3^{2} \cdot 7^{2} \cdot 13^{4} \cdot 19^{8} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$1596$ |
$48$ |
$0$ |
$10.63101849$ |
$1$ |
|
$2$ |
$829440$ |
$2.022491$ |
$10907077259233/4546939761$ |
$0.89275$ |
$4.14730$ |
$[1, 0, 1, -166790, 13850291]$ |
\(y^2+xy+y=x^3-166790x+13850291\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 28.12.0.a.1, 76.12.0.?, 84.24.0.?, $\ldots$ |
$[(-254289/43, 470336320/43)]$ |
$1$ |
| 98553.bb3 |
98553bc1 |
98553.bb |
98553bc |
$4$ |
$4$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( 3 \cdot 7^{4} \cdot 13^{2} \cdot 19^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3192$ |
$48$ |
$0$ |
$5.315509249$ |
$1$ |
|
$1$ |
$414720$ |
$1.675917$ |
$1130389181713/23128833$ |
$0.85773$ |
$3.95015$ |
$[1, 0, 1, -78345, -8296337]$ |
\(y^2+xy+y=x^3-78345x-8296337\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 56.12.0.ba.1, 76.12.0.?, $\ldots$ |
$[(102037/12, 28919963/12)]$ |
$1$ |
| 98553.bb4 |
98553bc3 |
98553.bb |
98553bc |
$4$ |
$4$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3 \cdot 7 \cdot 13^{8} \cdot 19^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3192$ |
$48$ |
$0$ |
$21.26203699$ |
$1$ |
|
$0$ |
$1658880$ |
$2.369064$ |
$398412054846287/325476557679$ |
$0.92245$ |
$4.46022$ |
$[1, 0, 1, 553405, 101714081]$ |
\(y^2+xy+y=x^3+553405x+101714081\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 56.12.0.ba.1, 152.12.0.?, $\ldots$ |
$[(18857320619/4930, 3739332361039287/4930)]$ |
$1$ |
| 98553.bc1 |
98553w1 |
98553.bc |
98553w |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{3} \cdot 7 \cdot 13^{5} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10374$ |
$2$ |
$0$ |
$19.20153792$ |
$1$ |
|
$0$ |
$1641600$ |
$1.984426$ |
$-26913692127232/1333313163$ |
$0.88880$ |
$4.23299$ |
$[0, 1, 1, -225384, -42986239]$ |
\(y^2+y=x^3+x^2-225384x-42986239\) |
10374.2.0.? |
$[(369235077/554, 6426383397155/554)]$ |
$1$ |
| 98553.bd1 |
98553ba1 |
98553.bd |
98553ba |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 3^{4} \cdot 7^{3} \cdot 13 \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$337824$ |
$1.264006$ |
$-2019487744/361179$ |
$0.90207$ |
$3.42328$ |
$[0, 1, 1, -9506, -411343]$ |
\(y^2+y=x^3+x^2-9506x-411343\) |
182.2.0.? |
$[ ]$ |
$1$ |