Learn more

Refine search


Results (1-50 of 58 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
9438.a1 9438.a \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -69214, -158316044]$ \(y^2+xy=x^3+x^2-69214x-158316044\) 1144.2.0.? $[ ]$
9438.b1 9438.b \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -3107524, 2108635654]$ \(y^2+xy=x^3+x^2-3107524x+2108635654\) 1144.2.0.? $[ ]$
9438.c1 9438.c \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -4983266, -4283806446]$ \(y^2+xy=x^3+x^2-4983266x-4283806446\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 88.24.0.?, 312.24.0.?, $\ldots$ $[ ]$
9438.c2 9438.c \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -324766, -61006634]$ \(y^2+xy=x^3+x^2-324766x-61006634\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 44.12.0-4.c.1.1, 88.24.0.?, $\ldots$ $[ ]$
9438.c3 9438.c \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -311456, -67030740]$ \(y^2+xy=x^3+x^2-311456x-67030740\) 2.6.0.a.1, 8.12.0-2.a.1.1, 44.12.0-2.a.1.1, 88.24.0.?, 156.12.0.?, $\ldots$ $[ ]$
9438.c4 9438.c \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -18636, -1146240]$ \(y^2+xy=x^3+x^2-18636x-1146240\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 44.12.0-4.c.1.2, 78.6.0.?, $\ldots$ $[ ]$
9438.d1 9438.d \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.690879009$ $[1, 1, 0, -5568, -170496]$ \(y^2+xy=x^3+x^2-5568x-170496\) 1144.2.0.? $[(237, 3330)]$
9438.e1 9438.e \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -63303330, 172542858228]$ \(y^2+xy=x^3+x^2-63303330x+172542858228\) 2.3.0.a.1, 88.6.0.?, 104.6.0.?, 572.6.0.?, 1144.12.0.? $[ ]$
9438.e2 9438.e \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 5695710, 13803666804]$ \(y^2+xy=x^3+x^2+5695710x+13803666804\) 2.3.0.a.1, 88.6.0.?, 104.6.0.?, 286.6.0.?, 1144.12.0.? $[ ]$
9438.f1 9438.f \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.347466863$ $[1, 1, 0, -1605309, 777102165]$ \(y^2+xy=x^3+x^2-1605309x+777102165\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 12.12.0-4.c.1.1, 24.24.0-8.m.1.3, $\ldots$ $[(457, 11569)]$
9438.f2 9438.f \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.694933727$ $[1, 1, 0, -167829, -6324435]$ \(y^2+xy=x^3+x^2-167829x-6324435\) 2.6.0.a.1, 8.12.0.b.1, 12.12.0-2.a.1.1, 24.24.0-8.b.1.3, 44.12.0-2.a.1.1, $\ldots$ $[(-363, 2814)]$
9438.f3 9438.f \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.389867454$ $[1, 1, 0, -129109, -17886227]$ \(y^2+xy=x^3+x^2-129109x-17886227\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 12.12.0-4.c.1.2, 24.24.0-8.m.1.1, $\ldots$ $[(-1901/3, 6329/3)]$
9438.f4 9438.f \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.389867454$ $[1, 1, 0, 650131, -49021947]$ \(y^2+xy=x^3+x^2+650131x-49021947\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 24.24.0-8.d.1.3, 44.12.0-4.c.1.1, $\ldots$ $[(3509/5, 829942/5)]$
9438.g1 9438.g \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -6294, -1028628]$ \(y^2+xy=x^3+x^2-6294x-1028628\) 312.2.0.? $[ ]$
9438.h1 9438.h \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -30153, -2027835]$ \(y^2+xy=x^3+x^2-30153x-2027835\) 2.3.0.a.1, 24.6.0.i.1, 88.6.0.?, 132.6.0.?, 264.12.0.? $[ ]$
9438.h2 9438.h \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1993, -28475]$ \(y^2+xy=x^3+x^2-1993x-28475\) 2.3.0.a.1, 24.6.0.i.1, 66.6.0.a.1, 88.6.0.?, 264.12.0.? $[ ]$
9438.i1 9438.i \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -4460183, 3623719125]$ \(y^2+xy=x^3+x^2-4460183x+3623719125\) 2.3.0.a.1, 12.6.0.a.1, 572.6.0.?, 1716.12.0.? $[ ]$
9438.i2 9438.i \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -278423, 56677845]$ \(y^2+xy=x^3+x^2-278423x+56677845\) 2.3.0.a.1, 12.6.0.b.1, 286.6.0.?, 1716.12.0.? $[ ]$
9438.j1 9438.j \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.487883564$ $[1, 0, 1, -74660, 7859432]$ \(y^2+xy+y=x^3-74660x+7859432\) 3.4.0.a.1, 33.8.0-3.a.1.1, 312.8.0.?, 1144.2.0.?, 3432.16.0.? $[(54, 1969)]$
9438.j2 9438.j \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.162627854$ $[1, 0, 1, 1570, 53480]$ \(y^2+xy+y=x^3+1570x+53480\) 3.4.0.a.1, 33.8.0-3.a.1.2, 312.8.0.?, 1144.2.0.?, 3432.16.0.? $[(-12, 187)]$
9438.k1 9438.k \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.751275328$ $[1, 0, 1, -631865, -313730980]$ \(y^2+xy+y=x^3-631865x-313730980\) 1144.2.0.? $[(978, 1507)]$
9438.l1 9438.l \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -8957, 326456]$ \(y^2+xy+y=x^3-8957x+326456\) 312.2.0.? $[ ]$
9438.m1 9438.m \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -698702524, -7116255551110]$ \(y^2+xy+y=x^3-698702524x-7116255551110\) 7.24.0.a.1, 77.48.0.?, 728.48.0.?, 1144.2.0.?, 8008.96.2.? $[ ]$
9438.m2 9438.m \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 1978723766, 446609728005890]$ \(y^2+xy+y=x^3+1978723766x+446609728005890\) 7.24.0.a.2, 77.48.0.?, 728.48.0.?, 1144.2.0.?, 8008.96.2.? $[ ]$
9438.n1 9438.n \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.531922906$ $[1, 0, 1, -91, 152]$ \(y^2+xy+y=x^3-91x+152\) 2.3.0.a.1, 88.6.0.?, 104.6.0.?, 572.6.0.?, 1144.12.0.? $[(-8, 23)]$
9438.n2 9438.n \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.063845812$ $[1, 0, 1, 19, 20]$ \(y^2+xy+y=x^3+19x+20\) 2.3.0.a.1, 88.6.0.?, 104.6.0.?, 286.6.0.?, 1144.12.0.? $[(0, 4)]$
9438.o1 9438.o \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -892015, 323808098]$ \(y^2+xy+y=x^3-892015x+323808098\) 2.3.0.a.1, 88.6.0.?, 156.6.0.?, 3432.12.0.? $[ ]$
9438.o2 9438.o \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -40175, 7945826]$ \(y^2+xy+y=x^3-40175x+7945826\) 2.3.0.a.1, 78.6.0.?, 88.6.0.?, 3432.12.0.? $[ ]$
9438.p1 9438.p \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 7015, -8002942]$ \(y^2+xy+y=x^3+7015x-8002942\) 312.2.0.? $[ ]$
9438.q1 9438.q \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -7384, 241514]$ \(y^2+xy+y=x^3-7384x+241514\) 2.3.0.a.1, 12.6.0.a.1, 572.6.0.?, 1716.12.0.? $[ ]$
9438.q2 9438.q \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -124, 9194]$ \(y^2+xy+y=x^3-124x+9194\) 2.3.0.a.1, 12.6.0.b.1, 286.6.0.?, 1716.12.0.? $[ ]$
9438.r1 9438.r \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -25682, -1595923]$ \(y^2+xy+y=x^3+x^2-25682x-1595923\) 1144.2.0.? $[ ]$
9438.s1 9438.s \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -523168, -129871807]$ \(y^2+xy+y=x^3+x^2-523168x-129871807\) 2.3.0.a.1, 88.6.0.?, 104.6.0.?, 572.6.0.?, 1144.12.0.? $[ ]$
9438.s2 9438.s \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 47072, -10349503]$ \(y^2+xy+y=x^3+x^2+47072x-10349503\) 2.3.0.a.1, 88.6.0.?, 104.6.0.?, 286.6.0.?, 1144.12.0.? $[ ]$
9438.t1 9438.t \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.907806711$ $[1, 1, 1, -2509482, -1531161081]$ \(y^2+xy+y=x^3+x^2-2509482x-1531161081\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0.h.1, 44.12.0-4.c.1.2, 104.12.0.?, $\ldots$ $[(5891, 430839)]$
9438.t2 9438.t \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.907806711$ $[1, 1, 1, -283082, 19543943]$ \(y^2+xy+y=x^3+x^2-283082x+19543943\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 26.6.0.b.1, 44.12.0-4.c.1.1, $\ldots$ $[(5191/3, 180355/3)]$
9438.t3 9438.t \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.953903355$ $[1, 1, 1, -157242, -23845689]$ \(y^2+xy+y=x^3+x^2-157242x-23845689\) 2.6.0.a.1, 12.12.0.a.1, 44.12.0-2.a.1.1, 52.12.0.b.1, 132.24.0.?, $\ldots$ $[(545, 6987)]$
9438.t4 9438.t \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.476951677$ $[1, 1, 1, -2362, -923449]$ \(y^2+xy+y=x^3+x^2-2362x-923449\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 78.6.0.?, 88.12.0.?, $\ldots$ $[(193, 2323)]$
9438.u1 9438.u \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -604337, 180576551]$ \(y^2+xy+y=x^3+x^2-604337x+180576551\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 88.24.0.?, 104.24.0.?, $\ldots$ $[ ]$
9438.u2 9438.u \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -91297, -6754681]$ \(y^2+xy+y=x^3+x^2-91297x-6754681\) 2.3.0.a.1, 4.12.0-4.c.1.2, 88.24.0.?, 104.24.0.?, 1144.48.0.? $[ ]$
9438.u3 9438.u \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -38057, 2764631]$ \(y^2+xy+y=x^3+x^2-38057x+2764631\) 2.6.0.a.1, 4.12.0-2.a.1.1, 88.24.0.?, 104.24.0.?, 572.24.0.?, $\ldots$ $[ ]$
9438.u4 9438.u \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, 663, 147159]$ \(y^2+xy+y=x^3+x^2+663x+147159\) 2.3.0.a.1, 4.12.0-4.c.1.1, 88.24.0.?, 104.24.0.?, 286.6.0.?, $\ldots$ $[ ]$
9438.v1 9438.v \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -52, 749]$ \(y^2+xy+y=x^3+x^2-52x+749\) 312.2.0.? $[ ]$
9438.w1 9438.w \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -3648576, 2680805601]$ \(y^2+xy+y=x^3+x^2-3648576x+2680805601\) 2.3.0.a.1, 24.6.0.i.1, 88.6.0.?, 132.6.0.?, 264.12.0.? $[ ]$
9438.w2 9438.w \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -241216, 36694241]$ \(y^2+xy+y=x^3+x^2-241216x+36694241\) 2.3.0.a.1, 24.6.0.i.1, 66.6.0.a.1, 88.6.0.?, 264.12.0.? $[ ]$
9438.x1 9438.x \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.034420125$ $[1, 0, 0, -5222, 235236]$ \(y^2+xy=x^3-5222x+235236\) 1144.2.0.? $[(76, 490)]$
9438.y1 9438.y \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -14099, 643083]$ \(y^2+xy=x^3-14099x+643083\) 2.3.0.a.1, 88.6.0.?, 156.6.0.?, 3432.12.0.? $[ ]$
9438.y2 9438.y \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -789, 12189]$ \(y^2+xy=x^3-789x+12189\) 2.3.0.a.1, 78.6.0.?, 88.6.0.?, 3432.12.0.? $[ ]$
9438.z1 9438.z \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -74, -252]$ \(y^2+xy=x^3-74x-252\) 312.2.0.? $[ ]$
9438.ba1 9438.ba \( 2 \cdot 3 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $3.996821996$ $[1, 0, 0, -10953, -213597]$ \(y^2+xy=x^3-10953x-213597\) 2.3.0.a.1, 88.6.0.?, 104.6.0.?, 572.6.0.?, 1144.12.0.? $[(-237/2, 4059/2)]$
Next   displayed columns for results