Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000

Refine search


Results (1-50 of 62 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
94320.a1 94320.a \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -14448, -684772]$ \(y^2=x^3-14448x-684772\) 262.2.0.? $[ ]$
94320.b1 94320.b \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\Z/2\Z$ $4.180008519$ $[0, 0, 0, -1656603, 818525898]$ \(y^2=x^3-1656603x+818525898\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0.z.1, 120.24.0.?, $\ldots$ $[(783, 1206)]$
94320.b2 94320.b \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\Z/2\Z$ $4.180008519$ $[0, 0, 0, -1587483, -767211318]$ \(y^2=x^3-1587483x-767211318\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 12.12.0-4.c.1.2, 20.12.0.g.1, $\ldots$ $[(-753, 1098)]$
94320.b3 94320.b \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.090004259$ $[0, 0, 0, -147483, 884682]$ \(y^2=x^3-147483x+884682\) 2.6.0.a.1, 12.12.0-2.a.1.1, 20.12.0.b.1, 60.24.0-20.b.1.1, 524.12.0.?, $\ldots$ $[(-3, 1152)]$
94320.b4 94320.b \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\Z/2\Z$ $4.180008519$ $[0, 0, 0, 36837, 110538]$ \(y^2=x^3+36837x+110538\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0.z.1, 60.12.0-4.c.1.1, $\ldots$ $[(6, 576)]$
94320.c1 94320.c \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\mathsf{trivial}$ $2.138565170$ $[0, 0, 0, 253797, -210597302]$ \(y^2=x^3+253797x-210597302\) 1572.2.0.? $[(4361/2, 295245/2)]$
94320.d1 94320.d \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $2$ $\mathsf{trivial}$ $12.46902545$ $[0, 0, 0, -1308, -34868]$ \(y^2=x^3-1308x-34868\) 262.2.0.? $[(81, 625), (249, 3883)]$
94320.e1 94320.e \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\mathsf{trivial}$ $1.251225006$ $[0, 0, 0, -363, -10438]$ \(y^2=x^3-363x-10438\) 1048.2.0.? $[(31, 90)]$
94320.f1 94320.f \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\mathsf{trivial}$ $6.072243618$ $[0, 0, 0, -133923, -18870622]$ \(y^2=x^3-133923x-18870622\) 1048.2.0.? $[(28879, 4907250)]$
94320.g1 94320.g \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\mathsf{trivial}$ $1.138051918$ $[0, 0, 0, -183, 1033]$ \(y^2=x^3-183x+1033\) 1310.2.0.? $[(8, 9)]$
94320.h1 94320.h \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\mathsf{trivial}$ $9.452196218$ $[0, 0, 0, 1077, -161003]$ \(y^2=x^3+1077x-161003\) 1310.2.0.? $[(23852/19, 3056643/19)]$
94320.i1 94320.i \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -6303, 192602]$ \(y^2=x^3-6303x+192602\) 2.3.0.a.1, 20.6.0.c.1, 524.6.0.?, 2620.12.0.? $[ ]$
94320.i2 94320.i \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -408, 2783]$ \(y^2=x^3-408x+2783\) 2.3.0.a.1, 10.6.0.a.1, 524.6.0.?, 2620.12.0.? $[ ]$
94320.j1 94320.j \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\mathsf{trivial}$ $4.311208716$ $[0, 0, 0, 612, -1188]$ \(y^2=x^3+612x-1188\) 262.2.0.? $[(361, 6875)]$
94320.k1 94320.k \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -1128, -15748]$ \(y^2=x^3-1128x-15748\) 262.2.0.? $[ ]$
94320.l1 94320.l \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\mathsf{trivial}$ $1.065874100$ $[0, 0, 0, -3, 133]$ \(y^2=x^3-3x+133\) 1310.2.0.? $[(-4, 9)]$
94320.m1 94320.m \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\Z/2\Z$ $5.407950103$ $[0, 0, 0, -77403, 33082]$ \(y^2=x^3-77403x+33082\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 20.12.0-4.c.1.2, 60.24.0-60.h.1.4, $\ldots$ $[(-8517/7, 984334/7)]$
94320.m2 94320.m \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $10.81590020$ $[0, 0, 0, -53103, -4695698]$ \(y^2=x^3-53103x-4695698\) 2.6.0.a.1, 12.12.0-2.a.1.1, 20.12.0-2.a.1.1, 60.24.0-60.a.1.3, 524.12.0.?, $\ldots$ $[(282749/11, 149588712/11)]$
94320.m3 94320.m \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\Z/2\Z$ $21.63180041$ $[0, 0, 0, -53058, -4704077]$ \(y^2=x^3-53058x-4704077\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 24.12.0-4.c.1.3, 120.24.0.?, $\ldots$ $[(6098064371/3179, 434585705564556/3179)]$
94320.m4 94320.m \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\Z/2\Z$ $5.407950103$ $[0, 0, 0, -29523, -8888222]$ \(y^2=x^3-29523x-8888222\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0-4.c.1.5, 120.24.0.?, $\ldots$ $[(9329, 900900)]$
94320.n1 94320.n \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\Z/2\Z$ $39.66118596$ $[0, 0, 0, -12877824243, 562486176581042]$ \(y^2=x^3-12877824243x+562486176581042\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 12.12.0-4.c.1.1, 16.24.0-8.n.1.3, $\ldots$ $[(24152599140641135479/19177269, 486507120364547853504709202/19177269)]$
94320.n2 94320.n \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\Z/2\Z$ $19.83059298$ $[0, 0, 0, -1997668083, -22412349936718]$ \(y^2=x^3-1997668083x-22412349936718\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.8, 12.12.0-4.c.1.2, 24.48.0-24.bj.1.8, $\ldots$ $[(15030012889/121, 1840867404753312/121)]$
94320.n3 94320.n \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $39.66118596$ $[0, 0, 0, -811499763, 8636554773938]$ \(y^2=x^3-811499763x+8636554773938\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0-4.b.1.6, 12.24.0-4.b.1.3, 24.48.0-24.e.1.7, $\ldots$ $[(19550083814775183121/8719139, 85931703830770625568579814656/8719139)]$
94320.n4 94320.n \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $19.83059298$ $[0, 0, 0, -804864243, 8788841285042]$ \(y^2=x^3-804864243x+8788841285042\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0-4.b.1.4, 12.24.0-4.b.1.1, 24.48.0-24.l.1.12, $\ldots$ $[(78514760599/2021, 5351265898172658/2021)]$
94320.n5 94320.n \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\Z/2\Z$ $39.66118596$ $[0, 0, 0, -49889523, 139699897778]$ \(y^2=x^3-49889523x+139699897778\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 12.12.0-4.c.1.1, 16.24.0-8.n.1.3, $\ldots$ $[(568731243153163906/11012429, 125809532242527230280685674/11012429)]$
94320.n6 94320.n \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\Z/2\Z$ $79.32237192$ $[0, 0, 0, 268500237, 29939122773938]$ \(y^2=x^3+268500237x+29939122773938\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.4, 12.12.0-4.c.1.2, 24.48.0-24.bn.1.6, $\ldots$ $[(52085854479748992614430475053702991/450827973431979, 11922024746037469612661609231475111043310470720356286/450827973431979)]$
94320.o1 94320.o \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\mathsf{trivial}$ $2.626578437$ $[0, 0, 0, 17277, -9676478]$ \(y^2=x^3+17277x-9676478\) 1572.2.0.? $[(206, 1620)]$
94320.p1 94320.p \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -1548, -157572]$ \(y^2=x^3-1548x-157572\) 262.2.0.? $[ ]$
94320.q1 94320.q \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -4113363, 3239318162]$ \(y^2=x^3-4113363x+3239318162\) 1572.2.0.? $[ ]$
94320.r1 94320.r \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\mathsf{trivial}$ $1.130468070$ $[0, 0, 0, -100803, 14820802]$ \(y^2=x^3-100803x+14820802\) 1572.2.0.? $[(551, 11250)]$
94320.s1 94320.s \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\mathsf{trivial}$ $12.14889144$ $[0, 0, 0, -68823, -6949422]$ \(y^2=x^3-68823x-6949422\) 1572.2.0.? $[(378586/17, 227854810/17)]$
94320.t1 94320.t \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -13683, 685618]$ \(y^2=x^3-13683x+685618\) 5.12.0.a.1, 60.24.0-5.a.1.2, 5240.24.1.?, 15720.48.1.? $[ ]$
94320.t2 94320.t \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -6483, -51639662]$ \(y^2=x^3-6483x-51639662\) 5.12.0.a.2, 60.24.0-5.a.2.2, 5240.24.1.?, 15720.48.1.? $[ ]$
94320.u1 94320.u \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\mathsf{trivial}$ $3.787519544$ $[0, 0, 0, -633, 11707]$ \(y^2=x^3-633x+11707\) 1310.2.0.? $[(122, 1323)]$
94320.v1 94320.v \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\mathsf{trivial}$ $1.630129575$ $[0, 0, 0, 57, -158]$ \(y^2=x^3+57x-158\) 1572.2.0.? $[(6, 20)]$
94320.w1 94320.w \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\mathsf{trivial}$ $7.823762180$ $[0, 0, 0, -813, -19573]$ \(y^2=x^3-813x-19573\) 3.4.0.a.1, 12.8.0-3.a.1.1, 1310.2.0.?, 3930.8.0.?, 7860.16.0.? $[(5074/11, 188577/11)]$
94320.w2 94320.w \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\mathsf{trivial}$ $2.607920726$ $[0, 0, 0, 87, 587]$ \(y^2=x^3+87x+587\) 3.4.0.a.1, 12.8.0-3.a.1.2, 1310.2.0.?, 3930.8.0.?, 7860.16.0.? $[(34, 207)]$
94320.x1 94320.x \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 9357, -187342]$ \(y^2=x^3+9357x-187342\) 1572.2.0.? $[ ]$
94320.y1 94320.y \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -1803, -30598]$ \(y^2=x^3-1803x-30598\) 1572.2.0.? $[ ]$
94320.z1 94320.z \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\Z/2\Z$ $1.263425904$ $[0, 0, 0, -8982, 325431]$ \(y^2=x^3-8982x+325431\) 2.3.0.a.1, 10.6.0.a.1, 524.6.0.?, 2620.12.0.? $[(87, 450)]$
94320.z2 94320.z \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\Z/2\Z$ $0.631712952$ $[0, 0, 0, -3087, 746334]$ \(y^2=x^3-3087x+746334\) 2.3.0.a.1, 20.6.0.c.1, 262.6.0.?, 2620.12.0.? $[(-27, 900)]$
94320.ba1 94320.ba \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\Z/2\Z$ $4.241136433$ $[0, 0, 0, -3207, -65806]$ \(y^2=x^3-3207x-65806\) 2.3.0.a.1, 12.6.0.a.1, 524.6.0.?, 1572.12.0.? $[(337/2, 4095/2)]$
94320.ba2 94320.ba \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\Z/2\Z$ $2.120568216$ $[0, 0, 0, 168, -4381]$ \(y^2=x^3+168x-4381\) 2.3.0.a.1, 12.6.0.b.1, 262.6.0.?, 1572.12.0.? $[(73, 630)]$
94320.bb1 94320.bb \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 213, 29]$ \(y^2=x^3+213x+29\) 1310.2.0.? $[ ]$
94320.bc1 94320.bc \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -51627, -33963271]$ \(y^2=x^3-51627x-33963271\) 1310.2.0.? $[ ]$
94320.bd1 94320.bd \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -1017, -12501]$ \(y^2=x^3-1017x-12501\) 1310.2.0.? $[ ]$
94320.be1 94320.be \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $2$ $\mathsf{trivial}$ $1.085714175$ $[0, 0, 0, 213, -134566]$ \(y^2=x^3+213x-134566\) 1048.2.0.? $[(373, 7200), (53, 160)]$
94320.bf1 94320.bf \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\Z/2\Z$ $10.70724284$ $[0, 0, 0, -272982, -54896681]$ \(y^2=x^3-272982x-54896681\) 2.3.0.a.1, 10.6.0.a.1, 524.6.0.?, 2620.12.0.? $[(97535/11, 20994858/11)]$
94320.bf2 94320.bf \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $1$ $\Z/2\Z$ $5.353621422$ $[0, 0, 0, -267087, -57380834]$ \(y^2=x^3-267087x-57380834\) 2.3.0.a.1, 20.6.0.c.1, 262.6.0.?, 2620.12.0.? $[(965, 24156)]$
94320.bg1 94320.bg \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1767, -21994]$ \(y^2=x^3-1767x-21994\) 2.3.0.a.1, 10.6.0.a.1, 524.6.0.?, 2620.12.0.? $[ ]$
Next   displayed columns for results