Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000

Refine search


Results (1-50 of 61 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
88752.a1 88752.a \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -2418152400, 51558628389696]$ \(y^2=x^3-x^2-2418152400x+51558628389696\) 8.2.0.a.1, 13.28.0.a.2, 52.56.0-13.a.2.1, 104.112.1.?, 559.84.2.?, $\ldots$ $[ ]$
88752.a2 88752.a \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -39302960, -94868756544]$ \(y^2=x^3-x^2-39302960x-94868756544\) 8.2.0.a.1, 13.28.0.a.1, 52.56.0-13.a.1.1, 104.112.1.?, 559.84.2.?, $\ldots$ $[ ]$
88752.b1 88752.b \( 2^{4} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $7.841966274$ $[0, -1, 0, -1305365032, 18153667670896]$ \(y^2=x^3-x^2-1305365032x+18153667670896\) 516.2.0.? $[(-371990/3, 33019442/3)]$
88752.c1 88752.c \( 2^{4} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $3.604537240$ $[0, -1, 0, -8012, -745284]$ \(y^2=x^3-x^2-8012x-745284\) 516.2.0.? $[(3985, 251464)]$
88752.d1 88752.d \( 2^{4} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $1.699207415$ $[0, -1, 0, 73344, -20914176]$ \(y^2=x^3-x^2+73344x-20914176\) 516.2.0.? $[(1018, 33282)]$
88752.e1 88752.e \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 1404624, 38733534144]$ \(y^2=x^3-x^2+1404624x+38733534144\) 516.2.0.? $[ ]$
88752.f1 88752.f \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -740216, 1632890592]$ \(y^2=x^3-x^2-740216x+1632890592\) 516.2.0.? $[ ]$
88752.g1 88752.g \( 2^{4} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $4.353403227$ $[0, -1, 0, 132512, -12453152]$ \(y^2=x^3-x^2+132512x-12453152\) 8.2.0.a.1 $[(172, 3924)]$
88752.h1 88752.h \( 2^{4} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $4.651954503$ $[0, -1, 0, -75608, -7987344]$ \(y^2=x^3-x^2-75608x-7987344\) 7.8.0.a.1, 8.2.0.a.1, 56.16.0.a.1, 301.24.0.?, 1204.48.0.?, $\ldots$ $[(340, 2344)]$
88752.h2 88752.h \( 2^{4} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $0.664564929$ $[0, -1, 0, 72, 4464]$ \(y^2=x^3-x^2+72x+4464\) 7.8.0.a.1, 8.2.0.a.1, 56.16.0.a.1, 301.24.0.?, 1204.48.0.?, $\ldots$ $[(-4, 64)]$
88752.i1 88752.i \( 2^{4} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $10.41108796$ $[0, -1, 0, -51313, -4459667]$ \(y^2=x^3-x^2-51313x-4459667\) 4.4.0.a.1, 86.2.0.?, 172.8.0.? $[(771724/31, 646919703/31)]$
88752.j1 88752.j \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 43760, -2246672]$ \(y^2=x^3-x^2+43760x-2246672\) 516.2.0.? $[ ]$
88752.k1 88752.k \( 2^{4} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $2.321352340$ $[0, -1, 0, -272, -1728]$ \(y^2=x^3-x^2-272x-1728\) 8.2.0.a.1 $[(26, 90)]$
88752.l1 88752.l \( 2^{4} \cdot 3 \cdot 43^{2} \) $1$ $\Z/2\Z$ $18.06081743$ $[0, -1, 0, -2411712, 1100644848]$ \(y^2=x^3-x^2-2411712x+1100644848\) 2.3.0.a.1, 12.6.0.g.1, 172.6.0.?, 516.12.0.? $[(280732086/751, 2043926444826/751)]$
88752.l2 88752.l \( 2^{4} \cdot 3 \cdot 43^{2} \) $1$ $\Z/2\Z$ $36.12163486$ $[0, -1, 0, -821572, -271964000]$ \(y^2=x^3-x^2-821572x-271964000\) 2.3.0.a.1, 12.6.0.g.1, 172.6.0.?, 258.6.0.?, 516.12.0.? $[(-5242661311181175/2943169, 45688222845417650938510/2943169)]$
88752.m1 88752.m \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -424037, -119390067]$ \(y^2=x^3-x^2-424037x-119390067\) 6.2.0.a.1 $[ ]$
88752.n1 88752.n \( 2^{4} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $2.193491772$ $[0, -1, 0, -1992, -45072]$ \(y^2=x^3-x^2-1992x-45072\) 8.2.0.a.1 $[(516, 11664)]$
88752.o1 88752.o \( 2^{4} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $5.080597295$ $[0, -1, 0, -571957, 167308477]$ \(y^2=x^3-x^2-571957x+167308477\) 86.2.0.? $[(628, 7443)]$
88752.p1 88752.p \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -710632, -230339312]$ \(y^2=x^3-x^2-710632x-230339312\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.r.1, 16.48.0.l.1, 24.48.0.bf.1, $\ldots$ $[ ]$
88752.p2 88752.p \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -118952, 15829152]$ \(y^2=x^3-x^2-118952x+15829152\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 12.12.0.h.1, 16.48.0.bb.2, $\ldots$ $[ ]$
88752.p3 88752.p \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -44992, -3489200]$ \(y^2=x^3-x^2-44992x-3489200\) 2.6.0.a.1, 4.12.0.b.1, 8.48.0.e.2, 24.96.1.bl.2, 172.24.0.?, $\ldots$ $[ ]$
88752.p4 88752.p \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -8012, 208800]$ \(y^2=x^3-x^2-8012x+208800\) 2.6.0.a.1, 4.12.0.b.1, 8.48.0.h.1, 12.24.0.c.1, 24.96.1.bu.1, $\ldots$ $[ ]$
88752.p5 88752.p \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 1233, 20202]$ \(y^2=x^3-x^2+1233x+20202\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$ $[ ]$
88752.p6 88752.p \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 28968, -13902768]$ \(y^2=x^3-x^2+28968x-13902768\) 2.3.0.a.1, 4.6.0.c.1, 8.48.0.m.1, 48.96.1.w.2, 172.12.0.?, $\ldots$ $[ ]$
88752.q1 88752.q \( 2^{4} \cdot 3 \cdot 43^{2} \) $1$ $\Z/2\Z$ $17.25667374$ $[0, -1, 0, -56698352, 164062718400]$ \(y^2=x^3-x^2-56698352x+164062718400\) 2.3.0.a.1, 8.6.0.d.1, 258.6.0.?, 1032.12.0.? $[(2051751394/1159, 443150463707770/1159)]$
88752.q2 88752.q \( 2^{4} \cdot 3 \cdot 43^{2} \) $1$ $\Z/2\Z$ $34.51334749$ $[0, -1, 0, -37764592, 275378080192]$ \(y^2=x^3-x^2-37764592x+275378080192\) 2.3.0.a.1, 8.6.0.a.1, 516.6.0.?, 1032.12.0.? $[(165100889254935026/7488299, 182888546320420384566824610/7488299)]$
88752.r1 88752.r \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -44992, 3699712]$ \(y^2=x^3-x^2-44992x+3699712\) 8.2.0.a.1 $[ ]$
88752.s1 88752.s \( 2^{4} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $2.276144181$ $[0, -1, 0, 19723, -3457767]$ \(y^2=x^3-x^2+19723x-3457767\) 86.2.0.? $[(589/2, 12943/2)]$
88752.t1 88752.t \( 2^{4} \cdot 3 \cdot 43^{2} \) $1$ $\Z/2\Z$ $90.11487316$ $[0, -1, 0, -162830952, -799694450832]$ \(y^2=x^3-x^2-162830952x-799694450832\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 12.12.0-4.c.1.2, 24.24.0-8.m.1.1, $\ldots$ $[(115853598936395282407421990374971924816154/504809120105399655, 39417658849429330080816990258277438834680830328152492558472442/504809120105399655)]$
88752.t2 88752.t \( 2^{4} \cdot 3 \cdot 43^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $45.05743658$ $[0, -1, 0, -10177512, -12491191440]$ \(y^2=x^3-x^2-10177512x-12491191440\) 2.6.0.a.1, 8.12.0.b.1, 12.12.0-2.a.1.1, 24.24.0-8.b.1.3, 172.12.0.?, $\ldots$ $[(-276902775524924935022/390001337, 20657033670740966207020518570/390001337)]$
88752.t3 88752.t \( 2^{4} \cdot 3 \cdot 43^{2} \) $1$ $\Z/2\Z$ $22.52871829$ $[0, -1, 0, -8994152, -15507339408]$ \(y^2=x^3-x^2-8994152x-15507339408\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 24.24.0-8.d.1.3, 172.12.0.?, $\ldots$ $[(5273214675572/1703, 12109116774313910736/1703)]$
88752.t4 88752.t \( 2^{4} \cdot 3 \cdot 43^{2} \) $1$ $\Z/2\Z$ $22.52871829$ $[0, -1, 0, -710632, -146379920]$ \(y^2=x^3-x^2-710632x-146379920\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 12.12.0-4.c.1.1, 24.24.0-8.m.1.3, $\ldots$ $[(-100302294396/15499, 32748993337925120/15499)]$
88752.u1 88752.u \( 2^{4} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $51.77714234$ $[0, -1, 0, -110541232, 2528897862592]$ \(y^2=x^3-x^2-110541232x+2528897862592\) 8.2.0.a.1 $[(930981984685235003075866/1787142659, 897740207959810721624575617391983090/1787142659)]$
88752.v1 88752.v \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -14060412, -20297835576]$ \(y^2=x^3+x^2-14060412x-20297835576\) 3.4.0.a.1, 6.8.0-3.a.1.1, 516.16.0.? $[ ]$
88752.v2 88752.v \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -81972, -57054456]$ \(y^2=x^3+x^2-81972x-57054456\) 3.4.0.a.1, 6.8.0-3.a.1.2, 516.16.0.? $[ ]$
88752.w1 88752.w \( 2^{4} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $0.388196242$ $[0, 1, 0, -59784, -31826700]$ \(y^2=x^3+x^2-59784x-31826700\) 8.2.0.a.1 $[(702, 16512)]$
88752.x1 88752.x \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -83190824, -292988333388]$ \(y^2=x^3+x^2-83190824x-292988333388\) 8.2.0.a.1 $[ ]$
88752.y1 88752.y \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -59784, 834036]$ \(y^2=x^3+x^2-59784x+834036\) 2.3.0.a.1, 8.6.0.d.1, 258.6.0.?, 1032.12.0.? $[ ]$
88752.y2 88752.y \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 236056, 6869172]$ \(y^2=x^3+x^2+236056x+6869172\) 2.3.0.a.1, 8.6.0.a.1, 516.6.0.?, 1032.12.0.? $[ ]$
88752.z1 88752.z \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\Z/4\Z$ $1$ $[0, 1, 0, -7233904, 7394289812]$ \(y^2=x^3+x^2-7233904x+7394289812\) 2.3.0.a.1, 4.12.0-4.c.1.1, 24.24.0-24.z.1.9, 172.24.0.?, 1032.48.0.? $[ ]$
88752.z2 88752.z \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -873344, -134069004]$ \(y^2=x^3+x^2-873344x-134069004\) 2.6.0.a.1, 4.12.0-2.a.1.1, 12.24.0-12.b.1.3, 172.24.0.?, 516.48.0.? $[ ]$
88752.z3 88752.z \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -725424, -237908844]$ \(y^2=x^3+x^2-725424x-237908844\) 2.3.0.a.1, 4.12.0-4.c.1.2, 24.24.0-24.z.1.1, 258.6.0.?, 344.24.0.?, $\ldots$ $[ ]$
88752.z4 88752.z \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 3120496, -1014311340]$ \(y^2=x^3+x^2+3120496x-1014311340\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.12.0-4.c.1.5, 12.12.0.g.1, $\ldots$ $[ ]$
88752.ba1 88752.ba \( 2^{4} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $1.284717473$ $[0, 1, 0, -3683824, 3635110100]$ \(y^2=x^3+x^2-3683824x+3635110100\) 8.2.0.a.1 $[(8012, 698922)]$
88752.bb1 88752.bb \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -229, 1427]$ \(y^2=x^3+x^2-229x+1427\) 6.2.0.a.1 $[ ]$
88752.bc1 88752.bc \( 2^{4} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $3.961864062$ $[0, 1, 0, -503544, 144434772]$ \(y^2=x^3+x^2-503544x+144434772\) 8.2.0.a.1 $[(414, 2664)]$
88752.bd1 88752.bd \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -1304, -14268]$ \(y^2=x^3+x^2-1304x-14268\) 2.3.0.a.1, 12.6.0.g.1, 172.6.0.?, 516.12.0.? $[ ]$
88752.bd2 88752.bd \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -444, 3276]$ \(y^2=x^3+x^2-444x+3276\) 2.3.0.a.1, 12.6.0.g.1, 172.6.0.?, 258.6.0.?, 516.12.0.? $[ ]$
88752.be1 88752.be \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -94878353, 355903038171]$ \(y^2=x^3+x^2-94878353x+355903038171\) 4.4.0.a.1, 86.2.0.?, 172.8.0.? $[ ]$
88752.bf1 88752.bf \( 2^{4} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $0.772886777$ $[0, 1, 0, -139799808, 637006953780]$ \(y^2=x^3+x^2-139799808x+637006953780\) 7.8.0.a.1, 8.2.0.a.1, 28.16.0-7.a.1.2, 56.32.0-56.a.1.6, 301.24.0.?, $\ldots$ $[(-1233, 898614)]$
Next   displayed columns for results