| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 86700.a1 |
86700l1 |
86700.a |
86700l |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{2} \cdot 5^{7} \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$0.341659159$ |
$1$ |
|
$22$ |
$82944$ |
$0.759667$ |
$139264/45$ |
$0.79488$ |
$2.87702$ |
$[0, -1, 0, -1133, 10137]$ |
\(y^2=x^3-x^2-1133x+10137\) |
10.2.0.a.1 |
$[(7, 50), (-13, 150)]$ |
| 86700.b1 |
86700z1 |
86700.b |
86700z |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{9} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.32 |
2B |
$4080$ |
$96$ |
$1$ |
$5.713594774$ |
$1$ |
|
$3$ |
$591360$ |
$1.786074$ |
$131072/9$ |
$1.20155$ |
$4.04921$ |
$[0, -1, 0, -96333, 10836162]$ |
\(y^2=x^3-x^2-96333x+10836162\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.q.1, 10.6.0.a.1, 12.12.0.n.1, $\ldots$ |
$[(-342, 1914)]$ |
| 86700.b2 |
86700z2 |
86700.b |
86700z |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{4} \cdot 5^{9} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.28 |
2B |
$4080$ |
$96$ |
$1$ |
$11.42718954$ |
$1$ |
|
$1$ |
$1182720$ |
$2.132648$ |
$5488/81$ |
$1.00175$ |
$4.29531$ |
$[0, -1, 0, 84292, 46599912]$ |
\(y^2=x^3-x^2+84292x+46599912\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.t.1, 20.12.0.l.1, 24.24.0.eb.1, $\ldots$ |
$[(-129403/22, 23523147/22)]$ |
| 86700.c1 |
86700j1 |
86700.c |
86700j |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3 \cdot 5^{10} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3877632$ |
$2.733757$ |
$-4734976/1875$ |
$0.96959$ |
$4.98260$ |
$[0, -1, 0, -2784033, -2319486438]$ |
\(y^2=x^3-x^2-2784033x-2319486438\) |
6.2.0.a.1 |
$[ ]$ |
| 86700.d1 |
86700o1 |
86700.d |
86700o |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{6} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.5.0.1 |
5S4 |
$30$ |
$10$ |
$0$ |
$1.275687415$ |
$1$ |
|
$2$ |
$1175040$ |
$2.069839$ |
$278528/243$ |
$1.03702$ |
$4.18921$ |
$[0, -1, 0, 163767, 18118962]$ |
\(y^2=x^3-x^2+163767x+18118962\) |
5.5.0.a.1, 6.2.0.a.1, 30.10.0.a.1 |
$[(482, 14450)]$ |
| 86700.e1 |
86700h1 |
86700.e |
86700h |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{11} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4700160$ |
$2.856182$ |
$-1192310528/84375$ |
$0.91788$ |
$5.18396$ |
$[0, -1, 0, -6837258, -7287634863]$ |
\(y^2=x^3-x^2-6837258x-7287634863\) |
510.2.0.? |
$[ ]$ |
| 86700.f1 |
86700i1 |
86700.f |
86700i |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3 \cdot 5^{13} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3483648$ |
$2.695324$ |
$-12872772702976/3984375$ |
$0.94778$ |
$5.24310$ |
$[0, -1, 0, -8889158, 10206604437]$ |
\(y^2=x^3-x^2-8889158x+10206604437\) |
510.2.0.? |
$[ ]$ |
| 86700.g1 |
86700e1 |
86700.g |
86700e |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3 \cdot 5^{11} \cdot 17^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1.596859113$ |
$1$ |
|
$10$ |
$829440$ |
$2.130219$ |
$-1755904/159375$ |
$0.90854$ |
$4.29795$ |
$[0, -1, 0, -45758, -47317863]$ |
\(y^2=x^3-x^2-45758x-47317863\) |
510.2.0.? |
$[(3202, 180625), (13827, 1625625)]$ |
| 86700.h1 |
86700u1 |
86700.h |
86700u |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{3} \cdot 5^{4} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$0.838172825$ |
$1$ |
|
$4$ |
$995328$ |
$2.098888$ |
$-11237785600/7803$ |
$1.01679$ |
$4.58443$ |
$[0, -1, 0, -732133, 241508737]$ |
\(y^2=x^3-x^2-732133x+241508737\) |
6.2.0.a.1 |
$[(567, 2890)]$ |
| 86700.i1 |
86700v1 |
86700.i |
86700v |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{3} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.414353741$ |
$1$ |
|
$4$ |
$276480$ |
$1.436693$ |
$-3114752/4131$ |
$0.82324$ |
$3.58334$ |
$[0, -1, 0, -11078, 817977]$ |
\(y^2=x^3-x^2-11078x+817977\) |
510.2.0.? |
$[(142, 1445)]$ |
| 86700.j1 |
86700q1 |
86700.j |
86700q |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{5} \cdot 5^{8} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.5.0.1 |
5S4 |
$60$ |
$10$ |
$0$ |
$6.292422926$ |
$1$ |
|
$0$ |
$162000$ |
$1.278118$ |
$21250000/243$ |
$1.06217$ |
$3.60231$ |
$[0, -1, 0, -17708, 903912]$ |
\(y^2=x^3-x^2-17708x+903912\) |
5.5.0.a.1, 12.2.0.a.1, 60.10.0.a.1 |
$[(589/3, 3916/3)]$ |
| 86700.k1 |
86700b1 |
86700.k |
86700b |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{5} \cdot 5^{2} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.5.0.1 |
5S4 |
$30$ |
$10$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$42120$ |
$0.532892$ |
$-87040000/243$ |
$1.06238$ |
$2.87745$ |
$[0, -1, 0, -1133, -14343]$ |
\(y^2=x^3-x^2-1133x-14343\) |
5.5.0.a.1, 6.2.0.a.1, 30.10.0.a.1 |
$[ ]$ |
| 86700.l1 |
86700p2 |
86700.l |
86700p |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{3} \cdot 5^{3} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1020$ |
$12$ |
$0$ |
$4.129729891$ |
$1$ |
|
$5$ |
$497664$ |
$1.871874$ |
$1448301584/7803$ |
$1.09804$ |
$4.26258$ |
$[0, -1, 0, -216268, -38458568]$ |
\(y^2=x^3-x^2-216268x-38458568\) |
2.3.0.a.1, 60.6.0.a.1, 204.6.0.?, 340.6.0.?, 1020.12.0.? |
$[(-282, 154)]$ |
| 86700.l2 |
86700p1 |
86700.l |
86700p |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{3} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1020$ |
$12$ |
$0$ |
$2.064864945$ |
$1$ |
|
$7$ |
$248832$ |
$1.525301$ |
$21807104/12393$ |
$1.20425$ |
$3.64971$ |
$[0, -1, 0, -21193, 166282]$ |
\(y^2=x^3-x^2-21193x+166282\) |
2.3.0.a.1, 60.6.0.b.1, 170.6.0.?, 204.6.0.?, 1020.12.0.? |
$[(7, 135)]$ |
| 86700.m1 |
86700a2 |
86700.m |
86700a |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 3 \cdot 5^{8} \cdot 17^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1020$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$2193408$ |
$2.526371$ |
$2382032/75$ |
$0.80941$ |
$4.87099$ |
$[0, -1, 0, -2169908, -1195637688]$ |
\(y^2=x^3-x^2-2169908x-1195637688\) |
2.3.0.a.1, 60.6.0.e.1, 204.6.0.?, 340.6.0.?, 1020.12.0.? |
$[ ]$ |
| 86700.m2 |
86700a1 |
86700.m |
86700a |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{7} \cdot 17^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1020$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1096704$ |
$2.179798$ |
$131072/45$ |
$0.93207$ |
$4.37210$ |
$[0, -1, 0, -327533, 46123062]$ |
\(y^2=x^3-x^2-327533x+46123062\) |
2.3.0.a.1, 60.6.0.e.1, 170.6.0.?, 204.6.0.?, 1020.12.0.? |
$[ ]$ |
| 86700.n1 |
86700m1 |
86700.n |
86700m |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{5} \cdot 5^{2} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.5.0.1 |
5S4 |
$60$ |
$10$ |
$0$ |
$1.693662250$ |
$1$ |
|
$2$ |
$550800$ |
$1.890007$ |
$21250000/243$ |
$1.06217$ |
$4.24809$ |
$[0, -1, 0, -204708, 35363592]$ |
\(y^2=x^3-x^2-204708x+35363592\) |
5.5.0.a.1, 12.2.0.a.1, 60.10.0.a.1 |
$[(193, 1734)]$ |
| 86700.o1 |
86700ba1 |
86700.o |
86700ba |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{5} \cdot 5^{8} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.5.0.1 |
5S4 |
$30$ |
$10$ |
$0$ |
$1$ |
$49$ |
$7$ |
$0$ |
$3580200$ |
$2.754219$ |
$-87040000/243$ |
$1.06238$ |
$5.22181$ |
$[0, -1, 0, -8188333, -9037645463]$ |
\(y^2=x^3-x^2-8188333x-9037645463\) |
5.5.0.a.1, 6.2.0.a.1, 30.10.0.a.1 |
$[ ]$ |
| 86700.p1 |
86700c1 |
86700.p |
86700c |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{7} \cdot 17^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$2040$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$995328$ |
$1.940765$ |
$112377856/6885$ |
$0.88146$ |
$4.21856$ |
$[0, -1, 0, -183033, -28438938]$ |
\(y^2=x^3-x^2-183033x-28438938\) |
2.3.0.a.1, 4.6.0.b.1, 24.12.0-4.b.1.2, 170.6.0.?, 340.24.0.?, $\ldots$ |
$[ ]$ |
| 86700.p2 |
86700c2 |
86700.p |
86700c |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 5^{8} \cdot 17^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$2040$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1990656$ |
$2.287338$ |
$3286064/65025$ |
$0.86717$ |
$4.45978$ |
$[0, -1, 0, 142092, -118823688]$ |
\(y^2=x^3-x^2+142092x-118823688\) |
2.3.0.a.1, 4.6.0.a.1, 24.12.0-4.a.1.2, 340.12.0.?, 680.24.0.?, $\ldots$ |
$[ ]$ |
| 86700.q1 |
86700t2 |
86700.q |
86700t |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{8} \cdot 3 \cdot 5^{8} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$306$ |
$48$ |
$0$ |
$22.85172138$ |
$1$ |
|
$0$ |
$2488320$ |
$2.476543$ |
$-30866268160/3$ |
$1.11642$ |
$5.23938$ |
$[0, -1, 0, -8766333, -9987299463]$ |
\(y^2=x^3-x^2-8766333x-9987299463\) |
3.4.0.a.1, 6.8.0.b.1, 18.24.0.c.1, 51.8.0-3.a.1.1, 102.16.0.?, $\ldots$ |
$[(97836610328/5131, 12630392164610989/5131)]$ |
| 86700.q2 |
86700t1 |
86700.q |
86700t |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{3} \cdot 5^{8} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$102$ |
$48$ |
$0$ |
$7.617240460$ |
$1$ |
|
$0$ |
$829440$ |
$1.927237$ |
$-40960/27$ |
$1.02991$ |
$4.11608$ |
$[0, -1, 0, -96333, -16799463]$ |
\(y^2=x^3-x^2-96333x-16799463\) |
3.4.0.a.1, 6.24.0.c.1, 51.8.0-3.a.1.2, 102.48.0.? |
$[(77627/7, 21155378/7)]$ |
| 86700.r1 |
86700s1 |
86700.r |
86700s |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{9} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$3.223522931$ |
$1$ |
|
$2$ |
$622080$ |
$1.828814$ |
$-5095042816/19683$ |
$0.97245$ |
$4.23170$ |
$[0, -1, 0, -191958, 32543037]$ |
\(y^2=x^3-x^2-191958x+32543037\) |
510.2.0.? |
$[(367, 3375)]$ |
| 86700.s1 |
86700n1 |
86700.s |
86700n |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{10} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$30$ |
$16$ |
$0$ |
$12.00378250$ |
$1$ |
|
$0$ |
$3172608$ |
$2.755253$ |
$-127157223424/16875$ |
$1.00596$ |
$5.33533$ |
$[0, -1, 0, -12610033, 17241623062]$ |
\(y^2=x^3-x^2-12610033x+17241623062\) |
3.4.0.a.1, 6.8.0.b.1, 15.8.0-3.a.1.2, 30.16.0-6.b.1.2 |
$[(1433478/23, 662136050/23)]$ |
| 86700.s2 |
86700n2 |
86700.s |
86700n |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3 \cdot 5^{18} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$30$ |
$16$ |
$0$ |
$4.001260834$ |
$1$ |
|
$2$ |
$9517824$ |
$3.304558$ |
$611926016/732421875$ |
$1.14791$ |
$5.53737$ |
$[0, -1, 0, 2128967, 54361794562]$ |
\(y^2=x^3-x^2+2128967x+54361794562\) |
3.4.0.a.1, 6.8.0.b.1, 15.8.0-3.a.1.1, 30.16.0-6.b.1.1 |
$[(16377, 2116925)]$ |
| 86700.t1 |
86700d1 |
86700.t |
86700d |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{7} \cdot 5^{6} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$96768$ |
$0.989305$ |
$-370720768/2187$ |
$1.05186$ |
$3.32771$ |
$[0, -1, 0, -6233, 192462]$ |
\(y^2=x^3-x^2-6233x+192462\) |
6.2.0.a.1 |
$[ ]$ |
| 86700.u1 |
86700r1 |
86700.u |
86700r |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{3} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$2.051973078$ |
$1$ |
|
$2$ |
$2115072$ |
$2.440701$ |
$-5095042816/19683$ |
$0.97245$ |
$4.87748$ |
$[0, -1, 0, -2219038, 1277296297]$ |
\(y^2=x^3-x^2-2219038x+1277296297\) |
510.2.0.? |
$[(771, 4913)]$ |
| 86700.v1 |
86700f1 |
86700.v |
86700f |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{7} \cdot 5^{6} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$188160$ |
$1.295197$ |
$-8192/2187$ |
$1.26266$ |
$3.41670$ |
$[0, -1, 0, -1133, 316137]$ |
\(y^2=x^3-x^2-1133x+316137\) |
102.2.0.? |
$[ ]$ |
| 86700.w1 |
86700w1 |
86700.w |
86700w |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{10} \cdot 5^{3} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.5.0.1 |
5S4 |
$10$ |
$30$ |
$0$ |
$1.756187231$ |
$1$ |
|
$4$ |
$224640$ |
$1.410725$ |
$5818717724672/59049$ |
$1.13224$ |
$3.99571$ |
$[0, -1, 0, -78653, -8464023]$ |
\(y^2=x^3-x^2-78653x-8464023\) |
5.5.0.a.1, 10.30.0.a.1 |
$[(347, 2430)]$ |
| 86700.x1 |
86700bb1 |
86700.x |
86700bb |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{10} \cdot 5^{9} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.5.0.1 |
5S4 |
$10$ |
$30$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$19094400$ |
$3.632050$ |
$5818717724672/59049$ |
$1.13224$ |
$6.34007$ |
$[0, -1, 0, -568270333, -5213879671463]$ |
\(y^2=x^3-x^2-568270333x-5213879671463\) |
5.5.0.a.1, 10.30.0.a.1 |
$[ ]$ |
| 86700.y1 |
86700y1 |
86700.y |
86700y |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{9} \cdot 17^{13} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$4.336908022$ |
$1$ |
|
$0$ |
$17418240$ |
$3.464565$ |
$2498351450368/11079144171$ |
$1.00706$ |
$5.69031$ |
$[0, -1, 0, 25733042, 129684955537]$ |
\(y^2=x^3-x^2+25733042x+129684955537\) |
510.2.0.? |
$[(3109458/7, 5501945875/7)]$ |
| 86700.z1 |
86700g1 |
86700.z |
86700g |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{7} \cdot 5^{7} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1161216$ |
$2.150257$ |
$180472064/185895$ |
$0.85597$ |
$4.26022$ |
$[0, -1, 0, 214342, 33659937]$ |
\(y^2=x^3-x^2+214342x+33659937\) |
510.2.0.? |
$[ ]$ |
| 86700.ba1 |
86700x1 |
86700.ba |
86700x |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{17} \cdot 5^{8} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$144.1138913$ |
$1$ |
|
$0$ |
$28200960$ |
$3.676174$ |
$-38081092648960/37321507107$ |
$1.15191$ |
$5.95253$ |
$[0, -1, 0, -94021333, -575870974463]$ |
\(y^2=x^3-x^2-94021333x-575870974463\) |
6.2.0.a.1 |
$[(5149746134436250157881737758375744185009966355402013078520307016/478564753063727487962815769689, 322878011294677434515459599117748562236331895106676451886019761923353253441567264284332628762227/478564753063727487962815769689)]$ |
| 86700.bb1 |
86700k1 |
86700.bb |
86700k |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{11} \cdot 5^{6} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$5322240$ |
$2.823227$ |
$-1841198792704/3011499$ |
$1.22809$ |
$5.31612$ |
$[0, -1, 0, -11714133, -15449572863]$ |
\(y^2=x^3-x^2-11714133x-15449572863\) |
102.2.0.? |
$[ ]$ |
| 86700.bc1 |
86700bp1 |
86700.bc |
86700bp |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{11} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1.745677645$ |
$1$ |
|
$2$ |
$7464960$ |
$2.863441$ |
$-34158804736/1045659375$ |
$0.98248$ |
$5.07201$ |
$[0, 1, 0, -1230658, 3857363813]$ |
\(y^2=x^3+x^2-1230658x+3857363813\) |
510.2.0.? |
$[(-907, 65025)]$ |
| 86700.bd1 |
86700ca1 |
86700.bd |
86700ca |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{3} \cdot 17^{13} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3483648$ |
$2.659847$ |
$2498351450368/11079144171$ |
$1.00706$ |
$4.84102$ |
$[0, 1, 0, 1029322, 1037891373]$ |
\(y^2=x^3+x^2+1029322x+1037891373\) |
510.2.0.? |
$[ ]$ |
| 86700.be1 |
86700bn1 |
86700.be |
86700bn |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{17} \cdot 5^{2} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1.195214569$ |
$1$ |
|
$4$ |
$5640192$ |
$2.871456$ |
$-38081092648960/37321507107$ |
$1.15191$ |
$5.10324$ |
$[0, 1, 0, -3760853, -4608472137]$ |
\(y^2=x^3+x^2-3760853x-4608472137\) |
6.2.0.a.1 |
$[(11809, 1264086)]$ |
| 86700.bf1 |
86700bz1 |
86700.bf |
86700bz |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{10} \cdot 5^{9} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.5.0.1 |
5S4 |
$10$ |
$30$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1123200$ |
$2.215443$ |
$5818717724672/59049$ |
$1.13224$ |
$4.84500$ |
$[0, 1, 0, -1966333, -1061935537]$ |
\(y^2=x^3+x^2-1966333x-1061935537\) |
5.5.0.a.1, 10.30.0.a.1 |
$[ ]$ |
| 86700.bg1 |
86700cd1 |
86700.bg |
86700cd |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{10} \cdot 5^{3} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.5.0.1 |
5S4 |
$10$ |
$30$ |
$0$ |
$1.767361096$ |
$1$ |
|
$4$ |
$3818880$ |
$2.827332$ |
$5818717724672/59049$ |
$1.13224$ |
$5.49078$ |
$[0, 1, 0, -22730813, -41720129697]$ |
\(y^2=x^3+x^2-22730813x-41720129697\) |
5.5.0.a.1, 10.30.0.a.1 |
$[(-2747, 270)]$ |
| 86700.bh1 |
86700bk1 |
86700.bh |
86700bk |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{7} \cdot 5^{6} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$4.080526541$ |
$1$ |
|
$2$ |
$3198720$ |
$2.711803$ |
$-8192/2187$ |
$1.26266$ |
$4.91177$ |
$[0, 1, 0, -327533, 1551216063]$ |
\(y^2=x^3+x^2-327533x+1551216063\) |
102.2.0.? |
$[(9922, 987513)]$ |
| 86700.bi1 |
86700bj2 |
86700.bi |
86700bj |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{8} \cdot 3 \cdot 5^{2} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1530$ |
$48$ |
$0$ |
$10.36859380$ |
$1$ |
|
$0$ |
$497664$ |
$1.671824$ |
$-30866268160/3$ |
$1.11642$ |
$4.39009$ |
$[0, 1, 0, -350653, -80038657]$ |
\(y^2=x^3+x^2-350653x-80038657\) |
3.4.0.a.1, 6.8.0.b.1, 18.24.0.c.1, 255.8.0.?, 510.16.0.?, $\ldots$ |
$[(417802/19, 223910553/19)]$ |
| 86700.bi2 |
86700bj1 |
86700.bi |
86700bj |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{3} \cdot 5^{2} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$510$ |
$48$ |
$0$ |
$3.456197935$ |
$1$ |
|
$2$ |
$165888$ |
$1.122517$ |
$-40960/27$ |
$1.02991$ |
$3.26679$ |
$[0, 1, 0, -3853, -135937]$ |
\(y^2=x^3+x^2-3853x-135937\) |
3.4.0.a.1, 6.24.0.c.1, 255.8.0.?, 510.48.0.? |
$[(1082, 35547)]$ |
| 86700.bj1 |
86700by1 |
86700.bj |
86700by |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{3} \cdot 17^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.115543422$ |
$1$ |
|
$28$ |
$124416$ |
$1.024094$ |
$-5095042816/19683$ |
$0.97245$ |
$3.38241$ |
$[0, 1, 0, -7678, 257273]$ |
\(y^2=x^3+x^2-7678x+257273\) |
510.2.0.? |
$[(62, 153), (368, 6885)]$ |
| 86700.bk1 |
86700bh1 |
86700.bk |
86700bh |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{10} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$510$ |
$16$ |
$0$ |
$1.440729717$ |
$1$ |
|
$2$ |
$186624$ |
$1.338646$ |
$-127157223424/16875$ |
$1.00596$ |
$3.84026$ |
$[0, 1, 0, -43633, 3493988]$ |
\(y^2=x^3+x^2-43633x+3493988\) |
3.4.0.a.1, 6.8.0.b.1, 255.8.0.?, 510.16.0.? |
$[(128, 150)]$ |
| 86700.bk2 |
86700bh2 |
86700.bk |
86700bh |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3 \cdot 5^{18} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$510$ |
$16$ |
$0$ |
$4.322189152$ |
$1$ |
|
$2$ |
$559872$ |
$1.887953$ |
$611926016/732421875$ |
$1.14791$ |
$4.04230$ |
$[0, 1, 0, 7367, 11067488]$ |
\(y^2=x^3+x^2+7367x+11067488\) |
3.4.0.a.1, 6.8.0.b.1, 255.8.0.?, 510.16.0.? |
$[(-212, 150)]$ |
| 86700.bl1 |
86700br1 |
86700.bl |
86700br |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{7} \cdot 5^{6} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1645056$ |
$2.405910$ |
$-370720768/2187$ |
$1.05186$ |
$4.82278$ |
$[0, 1, 0, -1801433, 934757388]$ |
\(y^2=x^3+x^2-1801433x+934757388\) |
6.2.0.a.1 |
$[ ]$ |
| 86700.bm1 |
86700bi1 |
86700.bm |
86700bi |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{7} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$510$ |
$16$ |
$0$ |
$0.491481213$ |
$1$ |
|
$2$ |
$497664$ |
$1.790209$ |
$-1755904/2295$ |
$0.76623$ |
$3.95668$ |
$[0, 1, 0, -45758, 6785613]$ |
\(y^2=x^3+x^2-45758x+6785613\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 255.8.0.?, 510.16.0.? |
$[(793, 21675)]$ |
| 86700.bm2 |
86700bi2 |
86700.bm |
86700bi |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3 \cdot 5^{9} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$510$ |
$16$ |
$0$ |
$1.474443639$ |
$1$ |
|
$0$ |
$1492992$ |
$2.339516$ |
$1068359936/1842375$ |
$0.88734$ |
$4.47669$ |
$[0, 1, 0, 387742, -130633887]$ |
\(y^2=x^3+x^2+387742x-130633887\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 255.8.0.?, 510.16.0.? |
$[(6457/3, 614125/3)]$ |
| 86700.bn1 |
86700bx1 |
86700.bn |
86700bx |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{9} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10575360$ |
$3.245419$ |
$-5095042816/19683$ |
$0.97245$ |
$5.72678$ |
$[0, 1, 0, -55475958, 159551085213]$ |
\(y^2=x^3+x^2-55475958x+159551085213\) |
510.2.0.? |
$[ ]$ |
| 86700.bo1 |
86700bf1 |
86700.bo |
86700bf |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{8} \cdot 3 \cdot 5^{6} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$3.995084451$ |
$1$ |
|
$0$ |
$483840$ |
$1.709784$ |
$-65536/51$ |
$1.18457$ |
$3.88239$ |
$[0, 1, 0, -38533, -4470937]$ |
\(y^2=x^3+x^2-38533x-4470937\) |
102.2.0.? |
$[(3601/3, 179758/3)]$ |