Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
85063.a1 |
85063d2 |
85063.a |
85063d |
$2$ |
$3$ |
\( 11^{2} \cdot 19 \cdot 37 \) |
\( 11^{7} \cdot 19^{3} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$46398$ |
$16$ |
$0$ |
$1.555268697$ |
$1$ |
|
$2$ |
$466560$ |
$1.774168$ |
$38477541376000/3821718197$ |
$0.87005$ |
$4.02325$ |
$[0, 1, 1, -85103, 8668842]$ |
\(y^2+y=x^3+x^2-85103x+8668842\) |
3.4.0.a.1, 33.8.0-3.a.1.1, 4218.8.0.?, 15466.2.0.?, 46398.16.0.? |
$[(546, 11192)]$ |
85063.a2 |
85063d1 |
85063.a |
85063d |
$2$ |
$3$ |
\( 11^{2} \cdot 19 \cdot 37 \) |
\( 11^{9} \cdot 19 \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$46398$ |
$16$ |
$0$ |
$4.665806091$ |
$1$ |
|
$0$ |
$155520$ |
$1.224863$ |
$398688256000/935693$ |
$0.84264$ |
$3.62068$ |
$[0, 1, 1, -18553, -976915]$ |
\(y^2+y=x^3+x^2-18553x-976915\) |
3.4.0.a.1, 33.8.0-3.a.1.2, 4218.8.0.?, 15466.2.0.?, 46398.16.0.? |
$[(853/2, 17541/2)]$ |
85063.b1 |
85063a1 |
85063.b |
85063a |
$1$ |
$1$ |
\( 11^{2} \cdot 19 \cdot 37 \) |
\( 11^{15} \cdot 19 \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$15466$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1123200$ |
$2.251766$ |
$6155048569503744/1657637226773$ |
$1.02921$ |
$4.47033$ |
$[0, 0, 1, -461978, 88370081]$ |
\(y^2+y=x^3-461978x+88370081\) |
15466.2.0.? |
$[ ]$ |
85063.c1 |
85063b1 |
85063.c |
85063b |
$1$ |
$1$ |
\( 11^{2} \cdot 19 \cdot 37 \) |
\( 11^{6} \cdot 19^{2} \cdot 37^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$972000$ |
$1.884136$ |
$44091731607552/25033168477$ |
$1.20826$ |
$4.03525$ |
$[0, 0, 1, -89056, -1407200]$ |
\(y^2+y=x^3-89056x-1407200\) |
74.2.0.? |
$[ ]$ |
85063.d1 |
85063c2 |
85063.d |
85063c |
$2$ |
$2$ |
\( 11^{2} \cdot 19 \cdot 37 \) |
\( 11^{7} \cdot 19^{2} \cdot 37^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$30932$ |
$12$ |
$0$ |
$3.038460418$ |
$1$ |
|
$8$ |
$124800$ |
$1.180895$ |
$9434056897/5436299$ |
$0.84580$ |
$3.29085$ |
$[1, 0, 1, -5327, 9315]$ |
\(y^2+xy+y=x^3-5327x+9315\) |
2.3.0.a.1, 44.6.0.a.1, 2812.6.0.?, 30932.12.0.? |
$[(-1, 121), (843/2, 22143/2)]$ |
85063.d2 |
85063c1 |
85063.d |
85063c |
$2$ |
$2$ |
\( 11^{2} \cdot 19 \cdot 37 \) |
\( - 11^{8} \cdot 19 \cdot 37 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$30932$ |
$12$ |
$0$ |
$12.15384167$ |
$1$ |
|
$3$ |
$62400$ |
$0.834322$ |
$146363183/85063$ |
$0.79398$ |
$2.92384$ |
$[1, 0, 1, 1328, 1329]$ |
\(y^2+xy+y=x^3+1328x+1329\) |
2.3.0.a.1, 44.6.0.b.1, 1406.6.0.?, 30932.12.0.? |
$[(7/2, 473/2), (679/5, 28248/5)]$ |
85063.e1 |
85063f1 |
85063.e |
85063f |
$1$ |
$1$ |
\( 11^{2} \cdot 19 \cdot 37 \) |
\( 11^{7} \cdot 19 \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$15466$ |
$2$ |
$0$ |
$4.067054372$ |
$1$ |
|
$0$ |
$144000$ |
$0.898981$ |
$15851081728/7733$ |
$0.75900$ |
$3.33657$ |
$[0, 1, 1, -6332, -195981]$ |
\(y^2+y=x^3+x^2-6332x-195981\) |
15466.2.0.? |
$[(-187/2, 53/2)]$ |
85063.f1 |
85063e1 |
85063.f |
85063e |
$1$ |
$1$ |
\( 11^{2} \cdot 19 \cdot 37 \) |
\( - 11^{6} \cdot 19 \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$3.149442302$ |
$1$ |
|
$0$ |
$80080$ |
$0.725336$ |
$110592/26011$ |
$0.86293$ |
$2.81962$ |
$[0, 0, 1, 121, 10315]$ |
\(y^2+y=x^3+121x+10315\) |
38.2.0.a.1 |
$[(25/2, 847/2)]$ |