| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 846720.a1 |
- |
846720.a |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{7} \cdot 3^{3} \cdot 5^{8} \cdot 7^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10192896$ |
$2.087051$ |
$-1261231776/390625$ |
$0.97524$ |
$3.58931$ |
$[0, 0, 0, -223293, 50320158]$ |
\(y^2=x^3-223293x+50320158\) |
24.2.0.b.1 |
$[ ]$ |
| 846720.b1 |
- |
846720.b |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{13} \cdot 3^{3} \cdot 5^{8} \cdot 7^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$3.051681940$ |
$1$ |
|
$2$ |
$2912256$ |
$1.460670$ |
$-1261231776/390625$ |
$0.97524$ |
$3.03861$ |
$[0, 0, 0, -18228, 1173648]$ |
\(y^2=x^3-18228x+1173648\) |
24.2.0.b.1 |
$[(1024, 32500)]$ |
| 846720.c1 |
- |
846720.c |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( 2^{8} \cdot 3^{3} \cdot 5^{3} \cdot 7^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$2.140473546$ |
$1$ |
|
$2$ |
$760320$ |
$0.671806$ |
$58084992/125$ |
$1.10200$ |
$2.52779$ |
$[0, 0, 0, -2058, -35868]$ |
\(y^2=x^3-2058x-35868\) |
60.2.0.a.1 |
$[(-26, 8)]$ |
| 846720.d1 |
- |
846720.d |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( 2^{14} \cdot 3^{3} \cdot 5^{3} \cdot 7^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$12.05775166$ |
$1$ |
|
$0$ |
$10644480$ |
$1.991335$ |
$58084992/125$ |
$1.10200$ |
$3.68789$ |
$[0, 0, 0, -403368, -98421792]$ |
\(y^2=x^3-403368x-98421792\) |
60.2.0.a.1 |
$[(326068/21, 25440416/21)]$ |
| 846720.e1 |
- |
846720.e |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{7} \cdot 3^{11} \cdot 5^{3} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3483648$ |
$1.552063$ |
$-2859936/125$ |
$0.86294$ |
$3.19078$ |
$[0, 0, 0, -41013, 3315438]$ |
\(y^2=x^3-41013x+3315438\) |
120.2.0.? |
$[ ]$ |
| 846720.f1 |
- |
846720.f |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{13} \cdot 3^{9} \cdot 5^{11} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$34062336$ |
$2.837948$ |
$-4388755356576/48828125$ |
$1.12755$ |
$4.37413$ |
$[0, 0, 0, -9096948, 10661707728]$ |
\(y^2=x^3-9096948x+10661707728\) |
120.2.0.? |
$[ ]$ |
| 846720.g1 |
- |
846720.g |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( 2^{14} \cdot 3^{9} \cdot 5 \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$2.883367412$ |
$1$ |
|
$2$ |
$4257792$ |
$1.779238$ |
$24192/5$ |
$0.49355$ |
$3.31542$ |
$[0, 0, 0, -74088, -6223392]$ |
\(y^2=x^3-74088x-6223392\) |
60.2.0.a.1 |
$[(-108, 720)]$ |
| 846720.h1 |
- |
846720.h |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( 2^{14} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$1.330017176$ |
$1$ |
|
$2$ |
$202752$ |
$0.256976$ |
$24192/5$ |
$0.49355$ |
$1.97709$ |
$[0, 0, 0, -168, 672]$ |
\(y^2=x^3-168x+672\) |
60.2.0.a.1 |
$[(4, 8)]$ |
| 846720.i1 |
- |
846720.i |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( 2^{8} \cdot 3^{3} \cdot 5 \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$709632$ |
$0.883357$ |
$24192/5$ |
$0.49355$ |
$2.52779$ |
$[0, 0, 0, -2058, 28812]$ |
\(y^2=x^3-2058x+28812\) |
60.2.0.a.1 |
$[ ]$ |
| 846720.j1 |
- |
846720.j |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( 2^{8} \cdot 3^{9} \cdot 5 \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$3.141152359$ |
$1$ |
|
$2$ |
$304128$ |
$0.459708$ |
$24192/5$ |
$0.49355$ |
$2.15532$ |
$[0, 0, 0, -378, -2268]$ |
\(y^2=x^3-378x-2268\) |
60.2.0.a.1 |
$[(22, 8)]$ |
| 846720.k1 |
- |
846720.k |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{7} \cdot 3^{3} \cdot 5^{11} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5677056$ |
$1.942066$ |
$-4388755356576/48828125$ |
$1.12755$ |
$3.58649$ |
$[0, 0, 0, -252693, -49359758]$ |
\(y^2=x^3-252693x-49359758\) |
120.2.0.? |
$[ ]$ |
| 846720.l1 |
- |
846720.l |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{13} \cdot 3^{5} \cdot 5^{3} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$4.538380663$ |
$1$ |
|
$2$ |
$2322432$ |
$1.349331$ |
$-2859936/125$ |
$0.86294$ |
$3.01254$ |
$[0, 0, 0, -18228, -982352]$ |
\(y^2=x^3-18228x-982352\) |
120.2.0.? |
$[(186, 1436)]$ |
| 846720.m1 |
- |
846720.m |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( 2^{8} \cdot 3^{9} \cdot 5^{3} \cdot 7^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$15966720$ |
$2.194069$ |
$58084992/125$ |
$1.10200$ |
$3.86612$ |
$[0, 0, 0, -907578, 332173548]$ |
\(y^2=x^3-907578x+332173548\) |
60.2.0.a.1 |
$[ ]$ |
| 846720.n1 |
- |
846720.n |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( 2^{14} \cdot 3^{9} \cdot 5^{3} \cdot 7^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$6.638307140$ |
$1$ |
|
$0$ |
$4561920$ |
$1.567686$ |
$58084992/125$ |
$1.10200$ |
$3.31542$ |
$[0, 0, 0, -74088, 7747488]$ |
\(y^2=x^3-74088x+7747488\) |
60.2.0.a.1 |
$[(1297/3, 6803/3)]$ |
| 846720.o1 |
- |
846720.o |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{7} \cdot 3^{9} \cdot 5^{8} \cdot 7^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$8.098178900$ |
$1$ |
|
$0$ |
$4368384$ |
$1.663403$ |
$-1261231776/390625$ |
$0.97524$ |
$3.21685$ |
$[0, 0, 0, -41013, -3961062]$ |
\(y^2=x^3-41013x-3961062\) |
24.2.0.b.1 |
$[(237654/31, 30093750/31)]$ |
| 846720.p1 |
- |
846720.p |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{13} \cdot 3^{9} \cdot 5^{8} \cdot 7^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$25.37330168$ |
$1$ |
|
$0$ |
$61157376$ |
$2.982933$ |
$-1261231776/390625$ |
$0.97524$ |
$4.37695$ |
$[0, 0, 0, -8038548, -10869154128]$ |
\(y^2=x^3-8038548x-10869154128\) |
24.2.0.b.1 |
$[(259272405046/4627, 127933247343221396/4627)]$ |
| 846720.q1 |
- |
846720.q |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{7} \cdot 3^{11} \cdot 5^{6} \cdot 7^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$16920576$ |
$2.367027$ |
$-3481410336/5359375$ |
$0.91233$ |
$3.80101$ |
$[0, 0, 0, -437913, 213391962]$ |
\(y^2=x^3-437913x+213391962\) |
168.2.0.? |
$[ ]$ |
| 846720.r1 |
- |
846720.r |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{13} \cdot 3^{3} \cdot 5^{2} \cdot 7^{19} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$18.83190530$ |
$1$ |
|
$0$ |
$91054080$ |
$3.222351$ |
$-485696601325979424/2422225260175$ |
$1.04350$ |
$4.74134$ |
$[0, 0, 0, -48528228, -130678176048]$ |
\(y^2=x^3-48528228x-130678176048\) |
168.2.0.? |
$[(673531924/17, 17479754768440/17)]$ |
| 846720.s1 |
- |
846720.s |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{7} \cdot 3^{9} \cdot 5^{2} \cdot 7^{19} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$6.073921577$ |
$1$ |
|
$0$ |
$136581120$ |
$3.425083$ |
$-485696601325979424/2422225260175$ |
$1.04350$ |
$4.91958$ |
$[0, 0, 0, -109188513, 441038844162]$ |
\(y^2=x^3-109188513x+441038844162\) |
168.2.0.? |
$[(36729/2, 3688965/2)]$ |
| 846720.t1 |
- |
846720.t |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{13} \cdot 3^{5} \cdot 5^{6} \cdot 7^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11280384$ |
$2.164295$ |
$-3481410336/5359375$ |
$0.91233$ |
$3.62277$ |
$[0, 0, 0, -194628, -63227248]$ |
\(y^2=x^3-194628x-63227248\) |
168.2.0.? |
$[ ]$ |
| 846720.u1 |
- |
846720.u |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( 2^{14} \cdot 3^{3} \cdot 5^{7} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1161216$ |
$1.047993$ |
$224042112/78125$ |
$1.09289$ |
$2.64625$ |
$[0, 0, 0, -3528, 50848]$ |
\(y^2=x^3-3528x+50848\) |
60.2.0.a.1 |
$[ ]$ |
| 846720.v1 |
- |
846720.v |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( 2^{8} \cdot 3^{3} \cdot 5^{7} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4064256$ |
$1.674374$ |
$224042112/78125$ |
$1.09289$ |
$3.19696$ |
$[0, 0, 0, -43218, 2180108]$ |
\(y^2=x^3-43218x+2180108\) |
60.2.0.a.1 |
$[ ]$ |
| 846720.w1 |
- |
846720.w |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{8} \cdot 3^{9} \cdot 5 \cdot 7^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$1.196694068$ |
$1$ |
|
$10$ |
$516096$ |
$0.598678$ |
$-3456/5$ |
$0.45802$ |
$2.24711$ |
$[0, 0, 0, -378, 5292]$ |
\(y^2=x^3-378x+5292\) |
420.2.0.? |
$[(42, 252), (-21, 63)]$ |
| 846720.x1 |
- |
846720.x |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{14} \cdot 3^{9} \cdot 5 \cdot 7^{9} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$11.76817046$ |
$1$ |
|
$4$ |
$7225344$ |
$1.918207$ |
$-3456/5$ |
$0.45802$ |
$3.40721$ |
$[0, 0, 0, -74088, 14521248]$ |
\(y^2=x^3-74088x+14521248\) |
420.2.0.? |
$[(196, 2744), (5929/5, 400967/5)]$ |
| 846720.y1 |
- |
846720.y |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{14} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$13.14096784$ |
$1$ |
|
$0$ |
$4571136$ |
$1.770227$ |
$28577803104/28824005$ |
$0.96445$ |
$3.21627$ |
$[0, 0, 0, 47187, -3400502]$ |
\(y^2=x^3+47187x-3400502\) |
120.2.0.? |
$[(1654758/109, 3138499294/109)]$ |
| 846720.z1 |
- |
846720.z |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{14} \cdot 3^{3} \cdot 5 \cdot 7^{11} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$4.980903585$ |
$1$ |
|
$4$ |
$4423680$ |
$1.714954$ |
$-274776192/84035$ |
$0.87268$ |
$3.26256$ |
$[0, 0, 0, -50568, 5411168]$ |
\(y^2=x^3-50568x+5411168\) |
420.2.0.? |
$[(-7, 2401), (92, 1240)]$ |
| 846720.ba1 |
- |
846720.ba |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{14} \cdot 3^{3} \cdot 5^{5} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$3.530432706$ |
$1$ |
|
$2$ |
$6635520$ |
$1.893972$ |
$-42049152/1071875$ |
$0.96999$ |
$3.37292$ |
$[0, 0, 0, -27048, 11491872]$ |
\(y^2=x^3-27048x+11491872\) |
420.2.0.? |
$[(532, 12152)]$ |
| 846720.bb1 |
- |
846720.bb |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{7} \cdot 3^{11} \cdot 5^{5} \cdot 7^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$10.04519092$ |
$1$ |
|
$0$ |
$18800640$ |
$2.382980$ |
$67677024/7503125$ |
$0.97538$ |
$3.80190$ |
$[0, 0, 0, 117747, 214688502]$ |
\(y^2=x^3+117747x+214688502\) |
120.2.0.? |
$[(124642/9, 46333322/9)]$ |
| 846720.bc1 |
- |
846720.bc |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{8} \cdot 3^{9} \cdot 5^{5} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$0.815828938$ |
$1$ |
|
$4$ |
$11059200$ |
$2.277512$ |
$-3487197405312/21875$ |
$0.97958$ |
$4.10197$ |
$[0, 0, 0, -2653938, 1664127612]$ |
\(y^2=x^3-2653938x+1664127612\) |
420.2.0.? |
$[(924, 882)]$ |
| 846720.bd1 |
- |
846720.bd |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$3.852352886$ |
$1$ |
|
$2$ |
$276480$ |
$0.468028$ |
$864/5$ |
$0.67699$ |
$2.10872$ |
$[0, 0, 0, 147, -2058]$ |
\(y^2=x^3+147x-2058\) |
120.2.0.? |
$[(322, 5782)]$ |
| 846720.be1 |
- |
846720.be |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7^{4} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$2.532502675$ |
$1$ |
|
$4$ |
$235008$ |
$0.285228$ |
$42336/25$ |
$0.92080$ |
$1.94774$ |
$[0, 0, 0, 147, 98]$ |
\(y^2=x^3+147x+98\) |
24.2.0.b.1 |
$[(14, 70), (2, 20)]$ |
| 846720.bf1 |
- |
846720.bf |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{7} \cdot 3^{9} \cdot 5^{2} \cdot 7^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$13.17639391$ |
$1$ |
|
$0$ |
$4935168$ |
$1.807489$ |
$42336/25$ |
$0.92080$ |
$3.28607$ |
$[0, 0, 0, 64827, -907578]$ |
\(y^2=x^3+64827x-907578\) |
24.2.0.b.1 |
$[(669001/54, 803547235/54)]$ |
| 846720.bg1 |
- |
846720.bg |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( 2^{14} \cdot 3^{3} \cdot 5 \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2515968$ |
$1.495552$ |
$17635968/5$ |
$0.92657$ |
$3.31542$ |
$[0, 0, 0, -74088, 7760032]$ |
\(y^2=x^3-74088x+7760032\) |
60.2.0.a.1 |
$[ ]$ |
| 846720.bh1 |
- |
846720.bh |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( 2^{14} \cdot 3^{9} \cdot 5 \cdot 7^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$6.603480293$ |
$1$ |
|
$4$ |
$1078272$ |
$1.071903$ |
$17635968/5$ |
$0.92657$ |
$2.94296$ |
$[0, 0, 0, -13608, -610848]$ |
\(y^2=x^3-13608x-610848\) |
60.2.0.a.1 |
$[(-68, 8), (372, 6768)]$ |
| 846720.bi1 |
- |
846720.bi |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( 2^{8} \cdot 3^{9} \cdot 5 \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3773952$ |
$1.698284$ |
$17635968/5$ |
$0.92657$ |
$3.49366$ |
$[0, 0, 0, -166698, -26190108]$ |
\(y^2=x^3-166698x-26190108\) |
60.2.0.a.1 |
$[ ]$ |
| 846720.bj1 |
- |
846720.bj |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( 2^{8} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$1.199994444$ |
$1$ |
|
$2$ |
$179712$ |
$0.176023$ |
$17635968/5$ |
$0.92657$ |
$2.15532$ |
$[0, 0, 0, -378, 2828]$ |
\(y^2=x^3-378x+2828\) |
60.2.0.a.1 |
$[(11, 1)]$ |
| 846720.bk1 |
- |
846720.bk |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{13} \cdot 3^{9} \cdot 5^{2} \cdot 7^{4} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1.114250516$ |
$1$ |
|
$14$ |
$1410048$ |
$1.181108$ |
$42336/25$ |
$0.92080$ |
$2.73537$ |
$[0, 0, 0, 5292, -21168]$ |
\(y^2=x^3+5292x-21168\) |
24.2.0.b.1 |
$[(21, 315), (84, 1008)]$ |
| 846720.bl1 |
- |
846720.bl |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{13} \cdot 3^{3} \cdot 5^{2} \cdot 7^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3290112$ |
$1.604757$ |
$42336/25$ |
$0.92080$ |
$3.10784$ |
$[0, 0, 0, 28812, 268912]$ |
\(y^2=x^3+28812x+268912\) |
24.2.0.b.1 |
$[ ]$ |
| 846720.bm1 |
- |
846720.bm |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{13} \cdot 3^{9} \cdot 5 \cdot 7^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1.694426953$ |
$1$ |
|
$12$ |
$1658880$ |
$1.363909$ |
$864/5$ |
$0.67699$ |
$2.89635$ |
$[0, 0, 0, 5292, 444528]$ |
\(y^2=x^3+5292x+444528\) |
120.2.0.? |
$[(126, 1764), (28, 784)]$ |
| 846720.bn1 |
- |
846720.bn |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{14} \cdot 3^{3} \cdot 5^{5} \cdot 7^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$7372800$ |
$2.074780$ |
$-3487197405312/21875$ |
$0.97958$ |
$3.92373$ |
$[0, 0, 0, -1179528, -493074848]$ |
\(y^2=x^3-1179528x-493074848\) |
420.2.0.? |
$[ ]$ |
| 846720.bo1 |
- |
846720.bo |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{13} \cdot 3^{5} \cdot 5^{5} \cdot 7^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$12533760$ |
$2.180248$ |
$67677024/7503125$ |
$0.97538$ |
$3.62366$ |
$[0, 0, 0, 52332, -63611408]$ |
\(y^2=x^3+52332x-63611408\) |
120.2.0.? |
$[ ]$ |
| 846720.bp1 |
- |
846720.bp |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{8} \cdot 3^{9} \cdot 5^{5} \cdot 7^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$9953280$ |
$2.096706$ |
$-42049152/1071875$ |
$0.96999$ |
$3.55116$ |
$[0, 0, 0, -60858, -38785068]$ |
\(y^2=x^3-60858x-38785068\) |
420.2.0.? |
$[ ]$ |
| 846720.bq1 |
- |
846720.bq |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{8} \cdot 3^{9} \cdot 5 \cdot 7^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$2.056878430$ |
$1$ |
|
$2$ |
$6635520$ |
$1.917688$ |
$-274776192/84035$ |
$0.87268$ |
$3.44080$ |
$[0, 0, 0, -113778, -18262692]$ |
\(y^2=x^3-113778x-18262692\) |
420.2.0.? |
$[(3612, 216090)]$ |
| 846720.br1 |
- |
846720.br |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{13} \cdot 3^{9} \cdot 5 \cdot 7^{14} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$6.035284012$ |
$1$ |
|
$2$ |
$27426816$ |
$2.666107$ |
$28577803104/28824005$ |
$0.96445$ |
$4.00390$ |
$[0, 0, 0, 1698732, 734508432]$ |
\(y^2=x^3+1698732x+734508432\) |
120.2.0.? |
$[(24612, 3866688)]$ |
| 846720.bs1 |
- |
846720.bs |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{8} \cdot 3^{3} \cdot 5 \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$6.783800992$ |
$1$ |
|
$0$ |
$1204224$ |
$1.022327$ |
$-3456/5$ |
$0.45802$ |
$2.61957$ |
$[0, 0, 0, -2058, -67228]$ |
\(y^2=x^3-2058x-67228\) |
420.2.0.? |
$[(18032/13, 2116310/13)]$ |
| 846720.bt1 |
- |
846720.bt |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{14} \cdot 3^{3} \cdot 5 \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$344064$ |
$0.395945$ |
$-3456/5$ |
$0.45802$ |
$2.06887$ |
$[0, 0, 0, -168, -1568]$ |
\(y^2=x^3-168x-1568\) |
420.2.0.? |
$[ ]$ |
| 846720.bu1 |
- |
846720.bu |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( 2^{14} \cdot 3^{9} \cdot 5^{7} \cdot 7^{8} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$21.68824526$ |
$1$ |
|
$6$ |
$24385536$ |
$2.570255$ |
$224042112/78125$ |
$1.09289$ |
$3.98459$ |
$[0, 0, 0, -1555848, -470903328]$ |
\(y^2=x^3-1555848x-470903328\) |
60.2.0.a.1 |
$[(-348, 5328), (-663, 16407)]$ |
| 846720.bv1 |
- |
846720.bv |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( 2^{8} \cdot 3^{9} \cdot 5^{7} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$60$ |
$2$ |
$0$ |
$9.105616636$ |
$1$ |
|
$2$ |
$1741824$ |
$1.250725$ |
$224042112/78125$ |
$1.09289$ |
$2.82449$ |
$[0, 0, 0, -7938, -171612]$ |
\(y^2=x^3-7938x-171612\) |
60.2.0.a.1 |
$[(12688, 1429154)]$ |
| 846720.bw1 |
- |
846720.bw |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( 2^{13} \cdot 3^{9} \cdot 5^{3} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1.125426775$ |
$1$ |
|
$4$ |
$1866240$ |
$1.122465$ |
$13287456/125$ |
$0.82927$ |
$2.87143$ |
$[0, 0, 0, -9828, -371952]$ |
\(y^2=x^3-9828x-371952\) |
120.2.0.? |
$[(-54, 36)]$ |
| 846720.bx1 |
- |
846720.bx |
- |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \) |
\( 2^{7} \cdot 3^{9} \cdot 5^{3} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6531840$ |
$1.748846$ |
$13287456/125$ |
$0.82927$ |
$3.42214$ |
$[0, 0, 0, -120393, -15947442]$ |
\(y^2=x^3-120393x-15947442\) |
120.2.0.? |
$[ ]$ |