Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
8330.a1 |
8330l1 |
8330.a |
8330l |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2 \cdot 5 \cdot 7^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$0.422904012$ |
$1$ |
|
$4$ |
$7200$ |
$0.302989$ |
$-116930169/170$ |
$0.88233$ |
$3.35139$ |
$[1, -1, 0, -499, 4423]$ |
\(y^2+xy=x^3-x^2-499x+4423\) |
680.2.0.? |
$[(9, 20)]$ |
8330.b1 |
8330g2 |
8330.b |
8330g |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{6} \cdot 5^{4} \cdot 7^{10} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1428$ |
$16$ |
$0$ |
$0.669867224$ |
$1$ |
|
$6$ |
$483840$ |
$2.858898$ |
$-58798411541899527001/196520000$ |
$1.06180$ |
$7.19788$ |
$[1, 1, 0, -53154588, 149140215568]$ |
\(y^2+xy=x^3+x^2-53154588x+149140215568\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 68.2.0.a.1, 204.8.0.?, 1428.16.0.? |
$[(4224, -412)]$ |
8330.b2 |
8330g1 |
8330.b |
8330g |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{2} \cdot 5^{12} \cdot 7^{10} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1428$ |
$16$ |
$0$ |
$2.009601674$ |
$1$ |
|
$4$ |
$161280$ |
$2.309589$ |
$-99166425177001/16601562500$ |
$1.01758$ |
$5.75357$ |
$[1, 1, 0, -632713, 219691193]$ |
\(y^2+xy=x^3+x^2-632713x+219691193\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 68.2.0.a.1, 204.8.0.?, 1428.16.0.? |
$[(-776, 16013)]$ |
8330.c1 |
8330b1 |
8330.c |
8330b |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{7} \cdot 5^{5} \cdot 7^{12} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$80640$ |
$1.936665$ |
$15773593568039/800013200000$ |
$0.97557$ |
$5.15381$ |
$[1, 1, 0, 25602, 14686708]$ |
\(y^2+xy=x^3+x^2+25602x+14686708\) |
680.2.0.? |
$[ ]$ |
8330.d1 |
8330e1 |
8330.d |
8330e |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{3} \cdot 5^{3} \cdot 7^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$14280$ |
$16$ |
$0$ |
$1.657187402$ |
$1$ |
|
$2$ |
$4320$ |
$0.467053$ |
$-1771561/17000$ |
$0.99970$ |
$3.20458$ |
$[1, 1, 0, -123, -2267]$ |
\(y^2+xy=x^3+x^2-123x-2267\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 680.2.0.?, 2040.8.0.?, 14280.16.0.? |
$[(27, 109)]$ |
8330.d2 |
8330e2 |
8330.d |
8330e |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{9} \cdot 5 \cdot 7^{6} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$14280$ |
$16$ |
$0$ |
$0.552395800$ |
$1$ |
|
$4$ |
$12960$ |
$1.016359$ |
$1256216039/12577280$ |
$0.94869$ |
$3.92330$ |
$[1, 1, 0, 1102, 57268]$ |
\(y^2+xy=x^3+x^2+1102x+57268\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 680.2.0.?, 2040.8.0.?, 14280.16.0.? |
$[(41, 396)]$ |
8330.e1 |
8330f1 |
8330.e |
8330f |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{16} \cdot 5 \cdot 7^{2} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$0.999209352$ |
$1$ |
|
$4$ |
$3840$ |
$0.540803$ |
$-26934258841/94699520$ |
$0.91058$ |
$3.30820$ |
$[1, 1, 0, -228, -3632]$ |
\(y^2+xy=x^3+x^2-228x-3632\) |
20.2.0.a.1 |
$[(168, 2092)]$ |
8330.f1 |
8330c2 |
8330.f |
8330c |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{3} \cdot 5 \cdot 7^{12} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$14280$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$76032$ |
$1.698196$ |
$-19085751483878521/80001320$ |
$0.95098$ |
$5.44586$ |
$[1, 1, 0, -272808, 54731272]$ |
\(y^2+xy=x^3+x^2-272808x+54731272\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 680.2.0.?, 2040.8.0.?, 14280.16.0.? |
$[ ]$ |
8330.f2 |
8330c1 |
8330.f |
8330c |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2 \cdot 5^{3} \cdot 7^{8} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$14280$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$25344$ |
$1.148890$ |
$-8502154921/60184250$ |
$0.89208$ |
$4.11201$ |
$[1, 1, 0, -2083, 132287]$ |
\(y^2+xy=x^3+x^2-2083x+132287\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 680.2.0.?, 2040.8.0.?, 14280.16.0.? |
$[ ]$ |
8330.g1 |
8330a2 |
8330.g |
8330a |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( 2^{4} \cdot 5 \cdot 7^{9} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2380$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$50176$ |
$1.531000$ |
$8568561392847/23120$ |
$1.04135$ |
$5.23863$ |
$[1, -1, 0, -146225, 21558445]$ |
\(y^2+xy=x^3-x^2-146225x+21558445\) |
2.3.0.a.1, 140.6.0.?, 340.6.0.?, 476.6.0.?, 2380.12.0.? |
$[ ]$ |
8330.g2 |
8330a1 |
8330.g |
8330a |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{8} \cdot 5^{2} \cdot 7^{9} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2380$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$25088$ |
$1.184427$ |
$-2014698447/108800$ |
$0.98400$ |
$4.32297$ |
$[1, -1, 0, -9025, 347325]$ |
\(y^2+xy=x^3-x^2-9025x+347325\) |
2.3.0.a.1, 140.6.0.?, 238.6.0.?, 340.6.0.?, 2380.12.0.? |
$[ ]$ |
8330.h1 |
8330j2 |
8330.h |
8330j |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( 2^{5} \cdot 5^{2} \cdot 7^{12} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$952$ |
$12$ |
$0$ |
$1.851277695$ |
$1$ |
|
$2$ |
$46080$ |
$1.838234$ |
$7876916680687209/27200448800$ |
$0.97147$ |
$5.34783$ |
$[1, -1, 0, -203114, 35179220]$ |
\(y^2+xy=x^3-x^2-203114x+35179220\) |
2.3.0.a.1, 8.6.0.b.1, 476.6.0.?, 952.12.0.? |
$[(-19, 6257)]$ |
8330.h2 |
8330j1 |
8330.h |
8330j |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{10} \cdot 5^{4} \cdot 7^{9} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$952$ |
$12$ |
$0$ |
$0.925638847$ |
$1$ |
|
$5$ |
$23040$ |
$1.491661$ |
$-338463151209/3731840000$ |
$1.04122$ |
$4.56615$ |
$[1, -1, 0, -7114, 1036020]$ |
\(y^2+xy=x^3-x^2-7114x+1036020\) |
2.3.0.a.1, 8.6.0.c.1, 238.6.0.?, 952.12.0.? |
$[(191, 2477)]$ |
8330.i1 |
8330m2 |
8330.i |
8330m |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( 2^{4} \cdot 5 \cdot 7^{3} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2380$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7168$ |
$0.558045$ |
$8568561392847/23120$ |
$1.04135$ |
$3.94532$ |
$[1, -1, 0, -2984, -62000]$ |
\(y^2+xy=x^3-x^2-2984x-62000\) |
2.3.0.a.1, 140.6.0.?, 340.6.0.?, 476.6.0.?, 2380.12.0.? |
$[ ]$ |
8330.i2 |
8330m1 |
8330.i |
8330m |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{8} \cdot 5^{2} \cdot 7^{3} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2380$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3584$ |
$0.211472$ |
$-2014698447/108800$ |
$0.98400$ |
$3.02967$ |
$[1, -1, 0, -184, -960]$ |
\(y^2+xy=x^3-x^2-184x-960\) |
2.3.0.a.1, 140.6.0.?, 238.6.0.?, 340.6.0.?, 2380.12.0.? |
$[ ]$ |
8330.j1 |
8330i2 |
8330.j |
8330i |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{6} \cdot 5^{4} \cdot 7^{4} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$204$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$69120$ |
$1.885942$ |
$-58798411541899527001/196520000$ |
$1.06180$ |
$5.90458$ |
$[1, 0, 1, -1084788, -434966094]$ |
\(y^2+xy+y=x^3-1084788x-434966094\) |
3.8.0-3.a.1.1, 68.2.0.a.1, 204.16.0.? |
$[ ]$ |
8330.j2 |
8330i1 |
8330.j |
8330i |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{2} \cdot 5^{12} \cdot 7^{4} \cdot 17 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$204$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$23040$ |
$1.336636$ |
$-99166425177001/16601562500$ |
$1.01758$ |
$4.46026$ |
$[1, 0, 1, -12913, -642344]$ |
\(y^2+xy+y=x^3-12913x-642344\) |
3.8.0-3.a.1.2, 68.2.0.a.1, 204.16.0.? |
$[ ]$ |
8330.k1 |
8330h1 |
8330.k |
8330h |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{16} \cdot 5 \cdot 7^{8} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$26880$ |
$1.513758$ |
$-26934258841/94699520$ |
$0.91058$ |
$4.60150$ |
$[1, 0, 1, -11198, 1212208]$ |
\(y^2+xy+y=x^3-11198x+1212208\) |
20.2.0.a.1 |
$[ ]$ |
8330.l1 |
8330d1 |
8330.l |
8330d |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( 2^{4} \cdot 5^{2} \cdot 7^{6} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$4760$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$5760$ |
$0.433664$ |
$47045881/6800$ |
$0.98870$ |
$3.25026$ |
$[1, 1, 0, -368, -2512]$ |
\(y^2+xy=x^3+x^2-368x-2512\) |
2.3.0.a.1, 4.6.0.b.1, 34.6.0.a.1, 56.12.0-4.b.1.3, 68.12.0.e.1, $\ldots$ |
$[ ]$ |
8330.l2 |
8330d2 |
8330.l |
8330d |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{2} \cdot 5^{4} \cdot 7^{6} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$4760$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11520$ |
$0.780238$ |
$214921799/722500$ |
$0.91035$ |
$3.59250$ |
$[1, 1, 0, 612, -12508]$ |
\(y^2+xy=x^3+x^2+612x-12508\) |
2.3.0.a.1, 4.6.0.a.1, 28.12.0-4.a.1.1, 68.12.0.d.1, 476.24.0.?, $\ldots$ |
$[ ]$ |
8330.m1 |
8330k3 |
8330.m |
8330k |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( 2^{24} \cdot 5^{6} \cdot 7^{6} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.3, 3.4.0.1 |
2B, 3B |
$14280$ |
$384$ |
$9$ |
$3.186419088$ |
$1$ |
|
$3$ |
$172800$ |
$2.090431$ |
$8010684753304969/4456448000000$ |
$1.04256$ |
$5.34970$ |
$[1, 1, 0, -204257, 6903989]$ |
\(y^2+xy=x^3+x^2-204257x+6903989\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ |
$[(-407, 4981)]$ |
8330.m2 |
8330k1 |
8330.m |
8330k |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( 2^{8} \cdot 5^{2} \cdot 7^{6} \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.3, 3.4.0.1 |
2B, 3B |
$14280$ |
$384$ |
$9$ |
$9.559257264$ |
$1$ |
|
$1$ |
$57600$ |
$1.541126$ |
$1841373668746009/31443200$ |
$0.98941$ |
$5.18683$ |
$[1, 1, 0, -125122, -17087244]$ |
\(y^2+xy=x^3+x^2-125122x-17087244\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ |
$[(110212/9, 34723126/9)]$ |
8330.m3 |
8330k2 |
8330.m |
8330k |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{4} \cdot 5^{4} \cdot 7^{6} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.5, 3.4.0.1 |
2B, 3B |
$14280$ |
$384$ |
$9$ |
$4.779628632$ |
$1$ |
|
$2$ |
$115200$ |
$1.887699$ |
$-1673672305534489/241375690000$ |
$0.99210$ |
$5.20090$ |
$[1, 1, 0, -121202, -18202876]$ |
\(y^2+xy=x^3+x^2-121202x-18202876\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ |
$[(5368, 389806)]$ |
8330.m4 |
8330k4 |
8330.m |
8330k |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{12} \cdot 5^{12} \cdot 7^{6} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.5, 3.4.0.1 |
2B, 3B |
$14280$ |
$384$ |
$9$ |
$1.593209544$ |
$1$ |
|
$2$ |
$345600$ |
$2.437004$ |
$479958568556831351/289000000000000$ |
$1.05690$ |
$5.80307$ |
$[1, 1, 0, 799263, 55675061]$ |
\(y^2+xy=x^3+x^2+799263x+55675061\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ |
$[(482, 23279)]$ |
8330.n1 |
8330ba1 |
8330.n |
8330ba |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{5} \cdot 5^{3} \cdot 7^{2} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$0.163941311$ |
$1$ |
|
$8$ |
$8640$ |
$0.665904$ |
$-709731835729/334084000$ |
$0.91213$ |
$3.51977$ |
$[1, 0, 0, -680, -9248]$ |
\(y^2+xy=x^3-680x-9248\) |
40.2.0.a.1 |
$[(34, 68)]$ |
8330.o1 |
8330o1 |
8330.o |
8330o |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{20} \cdot 5^{6} \cdot 7^{8} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$68$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$241920$ |
$2.509888$ |
$-1980652037510828689/278528000000$ |
$0.98804$ |
$6.39122$ |
$[1, 1, 1, -4691261, -3913382061]$ |
\(y^2+xy+y=x^3+x^2-4691261x-3913382061\) |
68.2.0.a.1 |
$[ ]$ |
8330.p1 |
8330t1 |
8330.p |
8330t |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{4} \cdot 5^{3} \cdot 7^{4} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$0.288686445$ |
$1$ |
|
$6$ |
$4032$ |
$0.439233$ |
$341425679/578000$ |
$0.87863$ |
$3.11127$ |
$[1, 1, 1, 195, -1373]$ |
\(y^2+xy+y=x^3+x^2+195x-1373\) |
20.2.0.a.1 |
$[(17, 76)]$ |
8330.q1 |
8330y2 |
8330.q |
8330y |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{7} \cdot 5^{9} \cdot 7^{6} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$14280$ |
$16$ |
$0$ |
$0.045820785$ |
$1$ |
|
$14$ |
$90720$ |
$2.062729$ |
$-32391289681150609/1228250000000$ |
$1.00352$ |
$5.51149$ |
$[1, 1, 1, -325410, 73616815]$ |
\(y^2+xy+y=x^3+x^2-325410x+73616815\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 680.2.0.?, 2040.8.0.?, 14280.16.0.? |
$[(13, 8323)]$ |
8330.q2 |
8330y1 |
8330.q |
8330y |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{21} \cdot 5^{3} \cdot 7^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$14280$ |
$16$ |
$0$ |
$0.137462355$ |
$1$ |
|
$10$ |
$30240$ |
$1.513422$ |
$7023836099951/4456448000$ |
$0.99857$ |
$4.56995$ |
$[1, 1, 1, 19550, 334767]$ |
\(y^2+xy+y=x^3+x^2+19550x+334767\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 680.2.0.?, 2040.8.0.?, 14280.16.0.? |
$[(377, 7651)]$ |
8330.r1 |
8330z2 |
8330.r |
8330z |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{4} \cdot 5^{6} \cdot 7^{2} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1428$ |
$16$ |
$0$ |
$0.079940629$ |
$1$ |
|
$8$ |
$6912$ |
$0.753491$ |
$-290707016929/1228250000$ |
$0.93218$ |
$3.58940$ |
$[1, 1, 1, -505, 12375]$ |
\(y^2+xy+y=x^3+x^2-505x+12375\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 68.2.0.a.1, 204.8.0.?, 1428.16.0.? |
$[(-27, 98)]$ |
8330.r2 |
8330z1 |
8330.r |
8330z |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{12} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1428$ |
$16$ |
$0$ |
$0.239821889$ |
$1$ |
|
$6$ |
$2304$ |
$0.204185$ |
$375078431/1740800$ |
$1.00008$ |
$2.83388$ |
$[1, 1, 1, 55, -393]$ |
\(y^2+xy+y=x^3+x^2+55x-393\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 68.2.0.a.1, 204.8.0.?, 1428.16.0.? |
$[(7, 16)]$ |
8330.s1 |
8330q1 |
8330.s |
8330q |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2 \cdot 5^{5} \cdot 7^{4} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$3.474902888$ |
$1$ |
|
$0$ |
$4320$ |
$0.538653$ |
$3112538751/1806250$ |
$1.17384$ |
$3.28352$ |
$[1, -1, 1, 407, -269]$ |
\(y^2+xy+y=x^3-x^2+407x-269\) |
40.2.0.a.1 |
$[(79/2, 903/2)]$ |
8330.t1 |
8330v3 |
8330.t |
8330v |
$4$ |
$4$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( 2^{7} \cdot 5^{8} \cdot 7^{7} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.61 |
2B |
$56$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$516096$ |
$2.878151$ |
$291306206119284545407569/101150000000$ |
$1.03940$ |
$7.27812$ |
$[1, -1, 1, -67671337, -214250060951]$ |
\(y^2+xy+y=x^3-x^2-67671337x-214250060951\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.p.1.6, 56.48.0-56.bp.1.8 |
$[ ]$ |
8330.t2 |
8330v4 |
8330.t |
8330v |
$4$ |
$4$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( 2^{7} \cdot 5^{2} \cdot 7^{10} \cdot 17^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.105 |
2B |
$56$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$516096$ |
$2.878151$ |
$118495863754334673489/53596139570691200$ |
$1.03328$ |
$6.41330$ |
$[1, -1, 1, -5014057, -2018400919]$ |
\(y^2+xy+y=x^3-x^2-5014057x-2018400919\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.k.1.3, 28.12.0-4.c.1.1, 56.48.0-56.v.1.4 |
$[ ]$ |
8330.t3 |
8330v2 |
8330.t |
8330v |
$4$ |
$4$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( 2^{14} \cdot 5^{4} \cdot 7^{8} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.5 |
2Cs |
$56$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$258048$ |
$2.531578$ |
$71149857462630609489/41907496960000$ |
$1.06891$ |
$6.35680$ |
$[1, -1, 1, -4230057, -3345869719]$ |
\(y^2+xy+y=x^3-x^2-4230057x-3345869719\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 8.24.0-8.a.1.3, 28.24.0-28.b.1.1, 56.48.0-56.d.1.2 |
$[ ]$ |
8330.t4 |
8330v1 |
8330.t |
8330v |
$4$ |
$4$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{28} \cdot 5^{2} \cdot 7^{7} \cdot 17^{2} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.51 |
2B |
$56$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$129024$ |
$2.185005$ |
$-9470133471933009/13576123187200$ |
$1.05689$ |
$5.50628$ |
$[1, -1, 1, -215977, -71986071]$ |
\(y^2+xy+y=x^3-x^2-215977x-71986071\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.p.1.8, 14.6.0.b.1, 28.24.0-28.g.1.2, $\ldots$ |
$[ ]$ |
8330.u1 |
8330u1 |
8330.u |
8330u |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2 \cdot 5^{5} \cdot 7^{10} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$30240$ |
$1.511608$ |
$3112538751/1806250$ |
$1.17384$ |
$4.57682$ |
$[1, -1, 1, 19958, 52259]$ |
\(y^2+xy+y=x^3-x^2+19958x+52259\) |
40.2.0.a.1 |
$[ ]$ |
8330.v1 |
8330r1 |
8330.v |
8330r |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{4} \cdot 5^{3} \cdot 7^{10} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$28224$ |
$1.412188$ |
$341425679/578000$ |
$0.87863$ |
$4.40458$ |
$[1, 0, 0, 9554, 499540]$ |
\(y^2+xy=x^3+9554x+499540\) |
20.2.0.a.1 |
$[ ]$ |
8330.w1 |
8330s1 |
8330.w |
8330s |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{11} \cdot 5^{3} \cdot 7^{8} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$25344$ |
$1.445368$ |
$-79290863149681/213248000$ |
$0.91840$ |
$4.83896$ |
$[1, 0, 0, -43856, -3546880]$ |
\(y^2+xy=x^3-43856x-3546880\) |
680.2.0.? |
$[ ]$ |
8330.x1 |
8330n2 |
8330.x |
8330n |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{4} \cdot 5^{6} \cdot 7^{8} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$204$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$48384$ |
$1.726446$ |
$-290707016929/1228250000$ |
$0.93218$ |
$4.88271$ |
$[1, 0, 0, -24746, -4318924]$ |
\(y^2+xy=x^3-24746x-4318924\) |
3.8.0-3.a.1.1, 68.2.0.a.1, 204.16.0.? |
$[ ]$ |
8330.x2 |
8330n1 |
8330.x |
8330n |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{12} \cdot 5^{2} \cdot 7^{8} \cdot 17 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$204$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$16128$ |
$1.177141$ |
$375078431/1740800$ |
$1.00008$ |
$4.12719$ |
$[1, 0, 0, 2694, 142820]$ |
\(y^2+xy=x^3+2694x+142820\) |
3.8.0-3.a.1.2, 68.2.0.a.1, 204.16.0.? |
$[ ]$ |
8330.y1 |
8330x1 |
8330.y |
8330x |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{20} \cdot 5^{6} \cdot 7^{2} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$68$ |
$2$ |
$0$ |
$0.093646055$ |
$1$ |
|
$8$ |
$34560$ |
$1.536932$ |
$-1980652037510828689/278528000000$ |
$0.98804$ |
$5.09791$ |
$[1, 0, 0, -95740, 11395600]$ |
\(y^2+xy=x^3-95740x+11395600\) |
68.2.0.a.1 |
$[(120, 1220)]$ |
8330.z1 |
8330p1 |
8330.z |
8330p |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{5} \cdot 5^{3} \cdot 7^{8} \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$60480$ |
$1.638859$ |
$-709731835729/334084000$ |
$0.91213$ |
$4.81308$ |
$[1, 1, 1, -33321, 3138743]$ |
\(y^2+xy+y=x^3+x^2-33321x+3138743\) |
40.2.0.a.1 |
$[ ]$ |
8330.ba1 |
8330w1 |
8330.ba |
8330w |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{5} \cdot 5 \cdot 7^{8} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11520$ |
$0.645217$ |
$206425071/133280$ |
$0.85516$ |
$3.41407$ |
$[1, -1, 1, 603, 1789]$ |
\(y^2+xy+y=x^3-x^2+603x+1789\) |
680.2.0.? |
$[ ]$ |