Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000

Refine search


Results (1-50 of 72 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
8256.a1 8256.a \( 2^{6} \cdot 3 \cdot 43 \) $2$ $\mathsf{trivial}$ $0.480681728$ $[0, -1, 0, -17, 81]$ \(y^2=x^3-x^2-17x+81\) 516.2.0.? $[(1, 8), (9, 24)]$
8256.b1 8256.b \( 2^{6} \cdot 3 \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -2823937, -1825638239]$ \(y^2=x^3-x^2-2823937x-1825638239\) 516.2.0.? $[ ]$
8256.c1 8256.c \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\mathsf{trivial}$ $10.16038768$ $[0, -1, 0, -30417, -2031759]$ \(y^2=x^3-x^2-30417x-2031759\) 3.4.0.a.1, 24.8.0-3.a.1.1, 516.8.0.?, 1032.16.0.? $[(46799/7, 9936424/7)]$
8256.c2 8256.c \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\mathsf{trivial}$ $3.386795894$ $[0, -1, 0, -177, -5679]$ \(y^2=x^3-x^2-177x-5679\) 3.4.0.a.1, 24.8.0-3.a.1.2, 516.8.0.?, 1032.16.0.? $[(47, 296)]$
8256.d1 8256.d \( 2^{6} \cdot 3 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -169, -791]$ \(y^2=x^3-x^2-169x-791\) 2.3.0.a.1, 8.6.0.d.1, 258.6.0.?, 1032.12.0.? $[ ]$
8256.d2 8256.d \( 2^{6} \cdot 3 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -129, -1215]$ \(y^2=x^3-x^2-129x-1215\) 2.3.0.a.1, 8.6.0.a.1, 516.6.0.?, 1032.12.0.? $[ ]$
8256.e1 8256.e \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\Z/2\Z$ $1.814470286$ $[0, -1, 0, -129, 129]$ \(y^2=x^3-x^2-129x+129\) 2.3.0.a.1, 8.6.0.d.1, 258.6.0.?, 1032.12.0.? $[(-1, 16)]$
8256.e2 8256.e \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\Z/2\Z$ $0.907235143$ $[0, -1, 0, 511, 513]$ \(y^2=x^3-x^2+511x+513\) 2.3.0.a.1, 8.6.0.a.1, 516.6.0.?, 1032.12.0.? $[(1, 32)]$
8256.f1 8256.f \( 2^{6} \cdot 3 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -15649, 749473]$ \(y^2=x^3-x^2-15649x+749473\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 24.24.0-24.z.1.14, 172.12.0.?, $\ldots$ $[ ]$
8256.f2 8256.f \( 2^{6} \cdot 3 \cdot 43 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -1889, -12831]$ \(y^2=x^3-x^2-1889x-12831\) 2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0.b.1, 24.24.0-12.b.1.2, 172.12.0.?, $\ldots$ $[ ]$
8256.f3 8256.f \( 2^{6} \cdot 3 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1569, -23391]$ \(y^2=x^3-x^2-1569x-23391\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 24.24.0-24.z.1.10, 258.6.0.?, $\ldots$ $[ ]$
8256.f4 8256.f \( 2^{6} \cdot 3 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 6751, -104415]$ \(y^2=x^3-x^2+6751x-104415\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.12.0-4.c.1.3, 12.12.0.g.1, $\ldots$ $[ ]$
8256.g1 8256.g \( 2^{6} \cdot 3 \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -1601, -163743]$ \(y^2=x^3-x^2-1601x-163743\) 516.2.0.? $[ ]$
8256.h1 8256.h \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\mathsf{trivial}$ $1.164730024$ $[0, -1, 0, -16, 34]$ \(y^2=x^3-x^2-16x+34\) 516.2.0.? $[(3, 2)]$
8256.i1 8256.i \( 2^{6} \cdot 3 \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 159, 2049]$ \(y^2=x^3-x^2+159x+2049\) 516.2.0.? $[ ]$
8256.j1 8256.j \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\mathsf{trivial}$ $1.030775521$ $[0, -1, 0, -103, 769]$ \(y^2=x^3-x^2-103x+769\) 86.2.0.? $[(40, 243)]$
8256.k1 8256.k \( 2^{6} \cdot 3 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -48, 126]$ \(y^2=x^3-x^2-48x+126\) 2.3.0.a.1, 12.6.0.c.1, 172.6.0.?, 516.12.0.? $[ ]$
8256.k2 8256.k \( 2^{6} \cdot 3 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 87, 585]$ \(y^2=x^3-x^2+87x+585\) 2.3.0.a.1, 6.6.0.a.1, 172.6.0.?, 516.12.0.? $[ ]$
8256.l1 8256.l \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\Z/2\Z$ $2.055506342$ $[0, -1, 0, -913, -10319]$ \(y^2=x^3-x^2-913x-10319\) 2.3.0.a.1, 12.6.0.c.1, 172.6.0.?, 516.12.0.? $[(37, 72)]$
8256.l2 8256.l \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\Z/2\Z$ $4.111012685$ $[0, -1, 0, -53, -171]$ \(y^2=x^3-x^2-53x-171\) 2.3.0.a.1, 6.6.0.a.1, 172.6.0.?, 516.12.0.? $[(396, 7869)]$
8256.m1 8256.m \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\mathsf{trivial}$ $0.623688452$ $[0, -1, 0, -3, 9]$ \(y^2=x^3-x^2-3x+9\) 86.2.0.? $[(0, 3)]$
8256.n1 8256.n \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\mathsf{trivial}$ $18.82885940$ $[0, -1, 0, -3833665, -2888210111]$ \(y^2=x^3-x^2-3833665x-2888210111\) 7.24.0.a.2, 56.48.0-7.a.2.1, 516.2.0.?, 3612.48.2.?, 7224.96.2.? $[(1222716265/651, 27669832988608/651)]$
8256.n2 8256.n \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\mathsf{trivial}$ $2.689837057$ $[0, -1, 0, 10175, 879169]$ \(y^2=x^3-x^2+10175x+879169\) 7.24.0.a.1, 56.48.0-7.a.1.1, 516.2.0.?, 3612.48.2.?, 7224.96.2.? $[(-551/3, 4096/3)]$
8256.o1 8256.o \( 2^{6} \cdot 3 \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 95, 193]$ \(y^2=x^3-x^2+95x+193\) 516.2.0.? $[ ]$
8256.p1 8256.p \( 2^{6} \cdot 3 \cdot 43 \) $0$ $\Z/4\Z$ $1$ $[0, -1, 0, -352257, 80588193]$ \(y^2=x^3-x^2-352257x+80588193\) 2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.m.1.1, 1032.48.0.? $[ ]$
8256.p2 8256.p \( 2^{6} \cdot 3 \cdot 43 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -22017, 1264545]$ \(y^2=x^3-x^2-22017x+1264545\) 2.6.0.a.1, 4.12.0-2.a.1.1, 8.24.0-8.b.1.2, 516.24.0.?, 1032.48.0.? $[ ]$
8256.p3 8256.p \( 2^{6} \cdot 3 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -19457, 1567137]$ \(y^2=x^3-x^2-19457x+1567137\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.d.1.1, 1032.48.0.? $[ ]$
8256.p4 8256.p \( 2^{6} \cdot 3 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1537, 15265]$ \(y^2=x^3-x^2-1537x+15265\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.m.1.5, 258.6.0.?, 516.12.0.?, $\ldots$ $[ ]$
8256.q1 8256.q \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\mathsf{trivial}$ $1.293000465$ $[0, -1, 0, 43, 333]$ \(y^2=x^3-x^2+43x+333\) 86.2.0.? $[(-4, 9)]$
8256.r1 8256.r \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\Z/2\Z$ $15.36762410$ $[0, -1, 0, -122657, -16465215]$ \(y^2=x^3-x^2-122657x-16465215\) 2.3.0.a.1, 8.6.0.d.1, 258.6.0.?, 1032.12.0.? $[(427209709/25, 8830012055552/25)]$
8256.r2 8256.r \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\Z/2\Z$ $7.683812050$ $[0, -1, 0, -81697, -27680063]$ \(y^2=x^3-x^2-81697x-27680063\) 2.3.0.a.1, 8.6.0.a.1, 516.6.0.?, 1032.12.0.? $[(2734141, 4520966400)]$
8256.s1 8256.s \( 2^{6} \cdot 3 \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -77, -237]$ \(y^2=x^3-x^2-77x-237\) 86.2.0.? $[ ]$
8256.t1 8256.t \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\mathsf{trivial}$ $1.875533725$ $[0, -1, 0, -449, -3519]$ \(y^2=x^3-x^2-449x-3519\) 516.2.0.? $[(25, 16)]$
8256.u1 8256.u \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\mathsf{trivial}$ $0.868955629$ $[0, -1, 0, -929, 12321]$ \(y^2=x^3-x^2-929x+12321\) 516.2.0.? $[(25, 64)]$
8256.v1 8256.v \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\mathsf{trivial}$ $38.02481831$ $[0, -1, 0, -165024, -25822638]$ \(y^2=x^3-x^2-165024x-25822638\) 516.2.0.? $[(32656076158004051/39127, 5901276858418927215009866/39127)]$
8256.w1 8256.w \( 2^{6} \cdot 3 \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -391, -2867]$ \(y^2=x^3-x^2-391x-2867\) 86.2.0.? $[ ]$
8256.x1 8256.x \( 2^{6} \cdot 3 \cdot 43 \) $2$ $\mathsf{trivial}$ $0.137716650$ $[0, 1, 0, -30417, 2031759]$ \(y^2=x^3+x^2-30417x+2031759\) 3.4.0.a.1, 24.8.0-3.a.1.3, 516.8.0.?, 1032.16.0.? $[(69, 516), (155, 1032)]$
8256.x2 8256.x \( 2^{6} \cdot 3 \cdot 43 \) $2$ $\mathsf{trivial}$ $0.137716650$ $[0, 1, 0, -177, 5679]$ \(y^2=x^3+x^2-177x+5679\) 3.4.0.a.1, 24.8.0-3.a.1.4, 516.8.0.?, 1032.16.0.? $[(3, 72), (75, 648)]$
8256.y1 8256.y \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\mathsf{trivial}$ $1.824694698$ $[0, 1, 0, -17, -81]$ \(y^2=x^3+x^2-17x-81\) 516.2.0.? $[(9, 24)]$
8256.z1 8256.z \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\mathsf{trivial}$ $0.164731990$ $[0, 1, 0, -2823937, 1825638239]$ \(y^2=x^3+x^2-2823937x+1825638239\) 516.2.0.? $[(1739, 46656)]$
8256.ba1 8256.ba \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\Z/2\Z$ $0.888782416$ $[0, 1, 0, -15649, -749473]$ \(y^2=x^3+x^2-15649x-749473\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 24.24.0-24.z.1.6, 172.12.0.?, $\ldots$ $[(-73, 96)]$
8256.ba2 8256.ba \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.777564832$ $[0, 1, 0, -1889, 12831]$ \(y^2=x^3+x^2-1889x+12831\) 2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0.b.1, 24.24.0-12.b.1.1, 172.12.0.?, $\ldots$ $[(82, 645)]$
8256.ba3 8256.ba \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\Z/2\Z$ $0.888782416$ $[0, 1, 0, -1569, 23391]$ \(y^2=x^3+x^2-1569x+23391\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 24.24.0-24.z.1.2, 258.6.0.?, $\ldots$ $[(21, 12)]$
8256.ba4 8256.ba \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\Z/2\Z$ $3.555129664$ $[0, 1, 0, 6751, 104415]$ \(y^2=x^3+x^2+6751x+104415\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.12.0-4.c.1.4, 12.12.0.g.1, $\ldots$ $[(85, 1140)]$
8256.bb1 8256.bb \( 2^{6} \cdot 3 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -129, -129]$ \(y^2=x^3+x^2-129x-129\) 2.3.0.a.1, 8.6.0.d.1, 258.6.0.?, 1032.12.0.? $[ ]$
8256.bb2 8256.bb \( 2^{6} \cdot 3 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 511, -513]$ \(y^2=x^3+x^2+511x-513\) 2.3.0.a.1, 8.6.0.a.1, 516.6.0.?, 1032.12.0.? $[ ]$
8256.bc1 8256.bc \( 2^{6} \cdot 3 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -169, 791]$ \(y^2=x^3+x^2-169x+791\) 2.3.0.a.1, 8.6.0.d.1, 258.6.0.?, 1032.12.0.? $[ ]$
8256.bc2 8256.bc \( 2^{6} \cdot 3 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -129, 1215]$ \(y^2=x^3+x^2-129x+1215\) 2.3.0.a.1, 8.6.0.a.1, 516.6.0.?, 1032.12.0.? $[ ]$
8256.bd1 8256.bd \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\mathsf{trivial}$ $1.398280265$ $[0, 1, 0, 159, -2049]$ \(y^2=x^3+x^2+159x-2049\) 516.2.0.? $[(83, 768)]$
8256.be1 8256.be \( 2^{6} \cdot 3 \cdot 43 \) $1$ $\mathsf{trivial}$ $1.312568856$ $[0, 1, 0, -16, -34]$ \(y^2=x^3+x^2-16x-34\) 516.2.0.? $[(5, 6)]$
Next   displayed columns for results