Learn more

Refine search


Results (1-50 of 129 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
80080.a1 80080.a \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -315643, 68310058]$ \(y^2=x^3-315643x+68310058\) 40040.2.0.? $[ ]$
80080.b1 80080.b \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $0.755566251$ $[0, 1, 0, -21736, 1171764]$ \(y^2=x^3+x^2-21736x+1171764\) 2.3.0.a.1, 56.6.0.a.1, 260.6.0.?, 3640.12.0.? $[(110, 352), (44, 550)]$
80080.b2 80080.b \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $3.022265005$ $[0, 1, 0, -3816, -68300]$ \(y^2=x^3+x^2-3816x-68300\) 2.3.0.a.1, 56.6.0.d.1, 130.6.0.?, 3640.12.0.? $[(-36, 154), (-25, 110)]$
80080.c1 80080.c \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $0.275750516$ $[0, 1, 0, -11536, 291060]$ \(y^2=x^3+x^2-11536x+291060\) 2.3.0.a.1, 56.6.0.a.1, 220.6.0.?, 3080.12.0.? $[(14, 364), (126, 924)]$
80080.c2 80080.c \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $1.103002067$ $[0, 1, 0, 2184, 33124]$ \(y^2=x^3+x^2+2184x+33124\) 2.3.0.a.1, 56.6.0.d.1, 110.6.0.?, 3080.12.0.? $[(0, 182), (112, 1302)]$
80080.d1 80080.d \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $1.152055194$ $[0, 1, 0, -15496, -739596]$ \(y^2=x^3+x^2-15496x-739596\) 2.3.0.a.1, 40.6.0.d.1, 2002.6.0.?, 40040.12.0.? $[(-76, 70)]$
80080.d2 80080.d \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $0.576027597$ $[0, 1, 0, -2696, -1912076]$ \(y^2=x^3+x^2-2696x-1912076\) 2.3.0.a.1, 40.6.0.a.1, 4004.6.0.?, 40040.12.0.? $[(222, 2912)]$
80080.e1 80080.e \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $0.893945130$ $[0, 1, 0, -151578096, 713265531604]$ \(y^2=x^3+x^2-151578096x+713265531604\) 2.3.0.a.1, 56.6.0.a.1, 220.6.0.?, 3080.12.0.? $[(5244, 250250)]$
80080.e2 80080.e \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $0.446972565$ $[0, 1, 0, -3182576, 25719408340]$ \(y^2=x^3+x^2-3182576x+25719408340\) 2.3.0.a.1, 56.6.0.d.1, 110.6.0.?, 3080.12.0.? $[(-2036, 154154)]$
80080.f1 80080.f \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $2.552598206$ $[0, 1, 0, -714000, -232441100]$ \(y^2=x^3+x^2-714000x-232441100\) 2.3.0.a.1, 56.6.0.a.1, 220.6.0.?, 3080.12.0.? $[(-490, 100)]$
80080.f2 80080.f \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $5.105196412$ $[0, 1, 0, -41720, -4134812]$ \(y^2=x^3+x^2-41720x-4134812\) 2.3.0.a.1, 56.6.0.d.1, 110.6.0.?, 3080.12.0.? $[(342, 4660)]$
80080.g1 80080.g \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -1220240, 518401300]$ \(y^2=x^3+x^2-1220240x+518401300\) 2.3.0.a.1, 56.6.0.a.1, 220.6.0.?, 3080.12.0.? $[ ]$
80080.g2 80080.g \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -73360, 8727828]$ \(y^2=x^3+x^2-73360x+8727828\) 2.3.0.a.1, 56.6.0.d.1, 110.6.0.?, 3080.12.0.? $[ ]$
80080.h1 80080.h \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -6633354560, -207946935961292]$ \(y^2=x^3+x^2-6633354560x-207946935961292\) 2.3.0.a.1, 40.6.0.d.1, 2002.6.0.?, 40040.12.0.? $[ ]$
80080.h2 80080.h \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -6620854560, -208769670961292]$ \(y^2=x^3+x^2-6620854560x-208769670961292\) 2.3.0.a.1, 40.6.0.a.1, 4004.6.0.?, 40040.12.0.? $[ ]$
80080.i1 80080.i \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $1.475860177$ $[0, 1, 0, -280, 1428]$ \(y^2=x^3+x^2-280x+1428\) 2.3.0.a.1, 40.6.0.d.1, 2002.6.0.?, 40040.12.0.? $[(-4, 50)]$
80080.i2 80080.i \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $0.737930088$ $[0, 1, 0, 520, 8788]$ \(y^2=x^3+x^2+520x+8788\) 2.3.0.a.1, 40.6.0.a.1, 4004.6.0.?, 40040.12.0.? $[(-2, 88)]$
80080.j1 80080.j \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -320, -2300]$ \(y^2=x^3+x^2-320x-2300\) 2.3.0.a.1, 40.6.0.d.1, 2002.6.0.?, 40040.12.0.? $[ ]$
80080.j2 80080.j \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -120, -4940]$ \(y^2=x^3+x^2-120x-4940\) 2.3.0.a.1, 40.6.0.a.1, 4004.6.0.?, 40040.12.0.? $[ ]$
80080.k1 80080.k \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $0.134315554$ $[0, 1, 0, -782640, 260391988]$ \(y^2=x^3+x^2-782640x+260391988\) 2.3.0.a.1, 56.6.0.a.1, 260.6.0.?, 3640.12.0.? $[(246, 9100), (3046, 161700)]$
80080.k2 80080.k \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $0.537262218$ $[0, 1, 0, -110360, -8251100]$ \(y^2=x^3+x^2-110360x-8251100\) 2.3.0.a.1, 56.6.0.d.1, 130.6.0.?, 3640.12.0.? $[(-90, 980), (-160, 2310)]$
80080.l1 80080.l \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $0.114387275$ $[0, 1, 0, -1697080, 752390100]$ \(y^2=x^3+x^2-1697080x+752390100\) 2.3.0.a.1, 56.6.0.a.1, 260.6.0.?, 3640.12.0.? $[(-770, 40040)]$
80080.l2 80080.l \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $0.228774551$ $[0, 1, 0, -1642200, 809443348]$ \(y^2=x^3+x^2-1642200x+809443348\) 2.3.0.a.1, 56.6.0.d.1, 130.6.0.?, 3640.12.0.? $[(756, 770)]$
80080.m1 80080.m \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $2.352761420$ $[0, -1, 0, -616, -94864]$ \(y^2=x^3-x^2-616x-94864\) 3.4.0.a.1, 12.8.0-3.a.1.1, 40040.2.0.?, 120120.16.0.? $[(68, 416)]$
80080.m2 80080.m \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.784253806$ $[0, -1, 0, 5544, 2556400]$ \(y^2=x^3-x^2+5544x+2556400\) 3.4.0.a.1, 12.8.0-3.a.1.2, 40040.2.0.?, 120120.16.0.? $[(556, 13312)]$
80080.n1 80080.n \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $3.923594803$ $[0, -1, 0, -9539080, -11336685328]$ \(y^2=x^3-x^2-9539080x-11336685328\) 3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.1, 36.24.0-9.a.1.2, 117.36.0.?, $\ldots$ $[(6724, 478000)]$
80080.n2 80080.n \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $1.307864934$ $[0, -1, 0, -8809080, -13145341328]$ \(y^2=x^3-x^2-8809080x-13145341328\) 3.12.0.a.1, 12.24.0-3.a.1.1, 117.36.0.?, 468.72.0.?, 40040.2.0.?, $\ldots$ $[(3804, 91520)]$
80080.n3 80080.n \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $3.923594803$ $[0, -1, 0, 67885720, 143337734512]$ \(y^2=x^3-x^2+67885720x+143337734512\) 3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.2, 36.24.0-9.a.1.1, 117.36.0.?, $\ldots$ $[(-374172/17, 1133969408/17)]$
80080.o1 80080.o \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -230723, 14185922]$ \(y^2=x^3-230723x+14185922\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 40.24.0-40.y.1.14, 52.12.0-4.c.1.2, $\ldots$ $[ ]$
80080.o2 80080.o \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -128803, -17633502]$ \(y^2=x^3-128803x-17633502\) 2.6.0.a.1, 8.12.0-2.a.1.1, 20.12.0-2.a.1.1, 40.24.0-40.b.1.2, 52.12.0-2.a.1.1, $\ldots$ $[ ]$
80080.o3 80080.o \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -128483, -17726238]$ \(y^2=x^3-128483x-17726238\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 20.12.0-4.c.1.1, 40.24.0-40.y.1.1, $\ldots$ $[ ]$
80080.o4 80080.o \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -32003, -43517822]$ \(y^2=x^3-32003x-43517822\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 20.12.0-4.c.1.2, 40.24.0-40.s.1.2, $\ldots$ $[ ]$
80080.p1 80080.p \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1483, 8682]$ \(y^2=x^3-1483x+8682\) 2.3.0.a.1, 220.6.0.?, 364.6.0.?, 20020.12.0.? $[ ]$
80080.p2 80080.p \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 337, 1038]$ \(y^2=x^3+337x+1038\) 2.3.0.a.1, 110.6.0.?, 364.6.0.?, 20020.12.0.? $[ ]$
80080.q1 80080.q \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $5.568447662$ $[0, 0, 0, -369043, 86000658]$ \(y^2=x^3-369043x+86000658\) 2.3.0.a.1, 220.6.0.?, 364.6.0.?, 20020.12.0.? $[(623, 9894)]$
80080.q2 80080.q \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $2.784223831$ $[0, 0, 0, -12323, 2599522]$ \(y^2=x^3-12323x+2599522\) 2.3.0.a.1, 110.6.0.?, 364.6.0.?, 20020.12.0.? $[(-63, 1768)]$
80080.r1 80080.r \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -9623, 362178]$ \(y^2=x^3-9623x+362178\) 2.3.0.a.1, 44.6.0.a.1, 140.6.0.?, 1540.12.0.? $[ ]$
80080.r2 80080.r \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -328, 10827]$ \(y^2=x^3-328x+10827\) 2.3.0.a.1, 44.6.0.b.1, 70.6.0.a.1, 1540.12.0.? $[ ]$
80080.s1 80080.s \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -2724203, -1713325798]$ \(y^2=x^3-2724203x-1713325798\) 2.3.0.a.1, 56.6.0.a.1, 572.6.0.?, 8008.12.0.? $[ ]$
80080.s2 80080.s \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -35083, -68122182]$ \(y^2=x^3-35083x-68122182\) 2.3.0.a.1, 56.6.0.d.1, 286.6.0.?, 8008.12.0.? $[ ]$
80080.t1 80080.t \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $5.964823928$ $[0, 0, 0, -13154483, 18363640818]$ \(y^2=x^3-13154483x+18363640818\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 40.24.0-40.y.1.14, 52.12.0-4.c.1.2, $\ldots$ $[(2103, 714), (2319, 18150)]$
80080.t2 80080.t \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $1.491205982$ $[0, 0, 0, -822163, 286926162]$ \(y^2=x^3-822163x+286926162\) 2.6.0.a.1, 8.12.0-2.a.1.1, 20.12.0-2.a.1.1, 40.24.0-40.b.1.2, 52.12.0-2.a.1.1, $\ldots$ $[(647, 5082), (537, 528)]$
80080.t3 80080.t \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $1.491205982$ $[0, 0, 0, -782963, 315518642]$ \(y^2=x^3-782963x+315518642\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 20.12.0-4.c.1.2, 40.24.0-40.s.1.2, $\ldots$ $[(817, 14872), (479, 7098)]$
80080.t4 80080.t \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $1.491205982$ $[0, 0, 0, -53843, 4030738]$ \(y^2=x^3-53843x+4030738\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 20.12.0-4.c.1.1, 40.24.0-40.y.1.1, $\ldots$ $[(-39, 2464), (313, 4224)]$
80080.u1 80080.u \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $0.648954932$ $[0, 0, 0, -372683, -87473318]$ \(y^2=x^3-372683x-87473318\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 28.12.0-4.c.1.2, 56.24.0-56.s.1.3, $\ldots$ $[(-351, 308)]$
80080.u2 80080.u \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.297909865$ $[0, 0, 0, -29683, -557118]$ \(y^2=x^3-29683x-557118\) 2.6.0.a.1, 8.12.0-2.a.1.1, 28.12.0-2.a.1.1, 56.24.0-56.b.1.3, 572.12.0.?, $\ldots$ $[(-71, 1092)]$
80080.u3 80080.u \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $2.595819730$ $[0, 0, 0, -17183, 860382]$ \(y^2=x^3-17183x+860382\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 28.12.0-4.c.1.1, 56.24.0-56.y.1.9, $\ldots$ $[(117, 672)]$
80080.u4 80080.u \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $2.595819730$ $[0, 0, 0, 113317, -4360918]$ \(y^2=x^3+113317x-4360918\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 56.24.0-56.y.1.14, 572.12.0.?, $\ldots$ $[(479, 12642)]$
80080.v1 80080.v \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -36683, -2434182]$ \(y^2=x^3-36683x-2434182\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 28.12.0-4.c.1.2, 56.24.0-56.s.1.3, $\ldots$ $[ ]$
80080.v2 80080.v \( 2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -8683, 270618]$ \(y^2=x^3-8683x+270618\) 2.6.0.a.1, 8.12.0-2.a.1.1, 28.12.0-2.a.1.1, 56.24.0-56.b.1.3, 572.12.0.?, $\ldots$ $[ ]$
Next   displayed columns for results