The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000
| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 8004.a1 |
8004b1 |
8004.a |
8004b |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 23 \cdot 29 \) |
\( - 2^{4} \cdot 3 \cdot 23^{2} \cdot 29^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$174$ |
$2$ |
$0$ |
$0.138534872$ |
$1$ |
|
$6$ |
$3600$ |
$0.373109$ |
$31427449088/38705343$ |
$0.84525$ |
$3.01124$ |
$[0, -1, 0, 166, -927]$ |
\(y^2=x^3-x^2+166x-927\) |
174.2.0.? |
$[(76, 667)]$ |
$1$ |
| 8004.b1 |
8004a1 |
8004.b |
8004a |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 23 \cdot 29 \) |
\( - 2^{8} \cdot 3^{2} \cdot 23 \cdot 29 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1334$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1536$ |
$-0.045999$ |
$-143982592/6003$ |
$0.80714$ |
$2.71482$ |
$[0, -1, 0, -69, -207]$ |
\(y^2=x^3-x^2-69x-207\) |
1334.2.0.? |
$[ ]$ |
$1$ |
| 8004.c1 |
8004c1 |
8004.c |
8004c |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 23 \cdot 29 \) |
\( - 2^{4} \cdot 3^{9} \cdot 23^{2} \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$174$ |
$2$ |
$0$ |
$0.071874364$ |
$1$ |
|
$10$ |
$8208$ |
$0.908785$ |
$-4117777414120192/301956903$ |
$0.92621$ |
$4.30887$ |
$[0, 1, 0, -8414, 294297]$ |
\(y^2=x^3+x^2-8414x+294297\) |
174.2.0.? |
$[(58, 69)]$ |
$1$ |
Download
displayed columns for
results