| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 774.a1 |
774c1 |
774.a |
774c |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 43 \) |
\( - 2^{2} \cdot 3^{25} \cdot 43 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$516$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6080$ |
$1.835733$ |
$-9500554530751882177/199908972324$ |
$1.04122$ |
$7.56056$ |
$[1, -1, 0, -397116, -96224252]$ |
\(y^2+xy=x^3-x^2-397116x-96224252\) |
516.2.0.? |
$[ ]$ |
$1$ |
| 774.b1 |
774e1 |
774.b |
774e |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 43 \) |
\( 2^{2} \cdot 3^{7} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$1032$ |
$12$ |
$0$ |
$0.318104051$ |
$1$ |
|
$11$ |
$96$ |
$-0.240190$ |
$912673/516$ |
$0.90862$ |
$3.05429$ |
$[1, -1, 0, -18, 0]$ |
\(y^2+xy=x^3-x^2-18x\) |
2.3.0.a.1, 8.6.0.d.1, 258.6.0.?, 1032.12.0.? |
$[(6, 6)]$ |
$1$ |
| 774.b2 |
774e2 |
774.b |
774e |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 43 \) |
\( - 2 \cdot 3^{8} \cdot 43^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$1032$ |
$12$ |
$0$ |
$0.636208103$ |
$1$ |
|
$6$ |
$192$ |
$0.106383$ |
$56181887/33282$ |
$0.96315$ |
$3.67368$ |
$[1, -1, 0, 72, -54]$ |
\(y^2+xy=x^3-x^2+72x-54\) |
2.3.0.a.1, 8.6.0.a.1, 516.6.0.?, 1032.12.0.? |
$[(3, 12)]$ |
$1$ |
| 774.c1 |
774d2 |
774.c |
774d |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 43 \) |
\( - 2^{2} \cdot 3^{7} \cdot 43^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$3612$ |
$96$ |
$2$ |
$0.144128547$ |
$1$ |
|
$8$ |
$9408$ |
$1.968227$ |
$-23769846831649063249/3261823333284$ |
$1.04406$ |
$7.69846$ |
$[1, -1, 0, -539109, 152510121]$ |
\(y^2+xy=x^3-x^2-539109x+152510121\) |
7.24.0.a.2, 21.48.0-7.a.2.2, 516.2.0.?, 1204.48.0.?, 3612.96.2.? |
$[(-564, 16923)]$ |
$1$ |
| 774.c2 |
774d1 |
774.c |
774d |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 43 \) |
\( - 2^{14} \cdot 3^{13} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.1 |
7B.6.1 |
$3612$ |
$96$ |
$2$ |
$1.008899832$ |
$1$ |
|
$4$ |
$1344$ |
$0.995273$ |
$444369620591/1540767744$ |
$0.99664$ |
$5.26482$ |
$[1, -1, 0, 1431, -46899]$ |
\(y^2+xy=x^3-x^2+1431x-46899\) |
7.24.0.a.1, 21.48.0-7.a.1.2, 516.2.0.?, 1204.48.0.?, 3612.96.2.? |
$[(66, 543)]$ |
$1$ |
| 774.d1 |
774b3 |
774.d |
774b |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 43 \) |
\( 2^{3} \cdot 3^{7} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$1032$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1920$ |
$1.042383$ |
$18440127492397057/1032$ |
$1.01875$ |
$6.62174$ |
$[1, -1, 0, -49536, 4255960]$ |
\(y^2+xy=x^3-x^2-49536x+4255960\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 24.24.0-8.m.1.7, 172.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 774.d2 |
774b2 |
774.d |
774b |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 43 \) |
\( 2^{6} \cdot 3^{8} \cdot 43^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.4 |
2Cs |
$1032$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$960$ |
$0.695809$ |
$4502751117697/1065024$ |
$1.04479$ |
$5.37127$ |
$[1, -1, 0, -3096, 67072]$ |
\(y^2+xy=x^3-x^2-3096x+67072\) |
2.6.0.a.1, 8.12.0.b.1, 12.12.0-2.a.1.1, 24.24.0-8.b.1.2, 172.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 774.d3 |
774b4 |
774.d |
774b |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 43 \) |
\( - 2^{3} \cdot 3^{10} \cdot 43^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.16 |
2B |
$1032$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1920$ |
$1.042383$ |
$-3107661785857/2215383048$ |
$0.98806$ |
$5.43622$ |
$[1, -1, 0, -2736, 82984]$ |
\(y^2+xy=x^3-x^2-2736x+82984\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 12.12.0-4.c.1.1, 24.24.0-8.d.1.1, $\ldots$ |
$[ ]$ |
$1$ |
| 774.d4 |
774b1 |
774.d |
774b |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 43 \) |
\( 2^{12} \cdot 3^{7} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$1032$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$480$ |
$0.349236$ |
$1532808577/528384$ |
$0.93069$ |
$4.17075$ |
$[1, -1, 0, -216, 832]$ |
\(y^2+xy=x^3-x^2-216x+832\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 12.12.0-4.c.1.2, 24.24.0-8.m.1.8, $\ldots$ |
$[ ]$ |
$1$ |
| 774.e1 |
774a2 |
774.e |
774a |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 43 \) |
\( - 2^{12} \cdot 3^{9} \cdot 43 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$516$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$576$ |
$0.680293$ |
$-37226247219/176128$ |
$0.95713$ |
$5.14704$ |
$[1, -1, 0, -1878, -30988]$ |
\(y^2+xy=x^3-x^2-1878x-30988\) |
3.8.0-3.a.1.1, 516.16.0.? |
$[ ]$ |
$1$ |
| 774.e2 |
774a1 |
774.e |
774a |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 43 \) |
\( - 2^{4} \cdot 3^{3} \cdot 43^{3} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$516$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$192$ |
$0.130987$ |
$751089429/1272112$ |
$0.95534$ |
$3.66660$ |
$[1, -1, 0, 57, -243]$ |
\(y^2+xy=x^3-x^2+57x-243\) |
3.8.0-3.a.1.2, 516.16.0.? |
$[ ]$ |
$1$ |
| 774.f1 |
774f1 |
774.f |
774f |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 43 \) |
\( - 2^{12} \cdot 3^{3} \cdot 43 \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$516$ |
$16$ |
$0$ |
$0.418722863$ |
$1$ |
|
$14$ |
$192$ |
$0.130987$ |
$-37226247219/176128$ |
$0.95713$ |
$4.15605$ |
$[1, -1, 1, -209, 1217]$ |
\(y^2+xy+y=x^3-x^2-209x+1217\) |
3.8.0-3.a.1.2, 516.16.0.? |
$[(9, -8)]$ |
$1$ |
| 774.f2 |
774f2 |
774.f |
774f |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 43 \) |
\( - 2^{4} \cdot 3^{9} \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$516$ |
$16$ |
$0$ |
$0.139574287$ |
$1$ |
|
$6$ |
$576$ |
$0.680293$ |
$751089429/1272112$ |
$0.95534$ |
$4.65760$ |
$[1, -1, 1, 511, 6049]$ |
\(y^2+xy+y=x^3-x^2+511x+6049\) |
3.8.0-3.a.1.1, 516.16.0.? |
$[(109, 1106)]$ |
$1$ |
| 774.g1 |
774g1 |
774.g |
774g |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 43 \) |
\( - 2^{6} \cdot 3^{7} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$516$ |
$2$ |
$0$ |
$0.067708442$ |
$1$ |
|
$12$ |
$192$ |
$-0.016863$ |
$1685159/8256$ |
$0.89017$ |
$3.44872$ |
$[1, -1, 1, 22, 105]$ |
\(y^2+xy+y=x^3-x^2+22x+105\) |
516.2.0.? |
$[(-1, 9)]$ |
$1$ |
| 774.h1 |
774h1 |
774.h |
774h |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 43 \) |
\( 2^{14} \cdot 3^{13} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$1032$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1568$ |
$1.200113$ |
$778510269523657/1540767744$ |
$1.00479$ |
$6.14593$ |
$[1, -1, 1, -17249, -866127]$ |
\(y^2+xy+y=x^3-x^2-17249x-866127\) |
2.3.0.a.1, 8.6.0.d.1, 258.6.0.?, 1032.12.0.? |
$[ ]$ |
$1$ |
| 774.h2 |
774h2 |
774.h |
774h |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 43 \) |
\( - 2^{7} \cdot 3^{20} \cdot 43^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$1032$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3136$ |
$1.546686$ |
$-230042158153417/1131994839168$ |
$1.03167$ |
$6.30115$ |
$[1, -1, 1, -11489, -1458255]$ |
\(y^2+xy+y=x^3-x^2-11489x-1458255\) |
2.3.0.a.1, 8.6.0.a.1, 516.6.0.?, 1032.12.0.? |
$[ ]$ |
$1$ |
| 774.i1 |
774i1 |
774.i |
774i |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 43 \) |
\( - 2^{2} \cdot 3^{11} \cdot 43 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$516$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$320$ |
$0.170630$ |
$-338608873/41796$ |
$0.90085$ |
$3.97280$ |
$[1, -1, 1, -131, -601]$ |
\(y^2+xy+y=x^3-x^2-131x-601\) |
516.2.0.? |
$[ ]$ |
$1$ |