⌂
→
Elliptic curves
→
$\Q$
→
728
Citation
·
Feedback
·
Hide Menu
Elliptic curves over $\Q$ of conductor 728
Introduction
Overview
Random
Universe
Knowledge
L-functions
Rational
All
Modular forms
Classical
Maass
Hilbert
Bianchi
Varieties
Elliptic curves over $\Q$
Elliptic curves over $\Q(\alpha)$
Genus 2 curves over $\Q$
Higher genus families
Abelian varieties over $\F_{q}$
Belyi maps
Fields
Number fields
$p$-adic fields
Representations
Dirichlet characters
Artin representations
Groups
Galois groups
Sato-Tate groups
Abstract groups
Database
↑
Learn more
Source and acknowledgments
Completeness of the data
Reliability of the data
Elliptic curve labels
Congruent number curves
Stein-Watkins dataset
BHKSSW dataset
Refine search
Advanced search options
Conductor
prime
p-power
sq-free
divides
multiple of
Discriminant
j-invariant
Rank
Bad$\ p$
include
exclude
exactly
subset
Curves per isogeny class
Complex multiplication
Torsion
all
one
no potential CM
potential CM
CM field Q(sqrt(-1))
CM field Q(sqrt(-3))
CM field Q(sqrt(-7))
CM discriminant -3
CM discriminant -4
CM discriminant -7
CM discriminant -8
CM discriminant -11
CM discriminant -12
CM discriminant -16
CM discriminant -19
CM discriminant -27
CM discriminant -28
CM discriminant -43
CM discriminant -67
CM discriminant -163
trivial
order 4
order 8
order 12
ℤ/2ℤ
ℤ/3ℤ
ℤ/4ℤ
ℤ/5ℤ
ℤ/6ℤ
ℤ/7ℤ
ℤ/8ℤ
ℤ/9ℤ
ℤ/10ℤ
ℤ/12ℤ
ℤ/2ℤ⊕ℤ/2ℤ
ℤ/2ℤ⊕ℤ/4ℤ
ℤ/2ℤ⊕ℤ/6ℤ
ℤ/2ℤ⊕ℤ/8ℤ
Isogeny class degree
Cyclic isogeny degree
Isogeny class size
Integral points
Analytic order of Ш
$p\ $div$\ $|Ш|
include
exclude
exactly
subset
Regulator
Reduction
Faltings height
semistable
not semistable
potentially good
not potentially good
Galois image
Adelic level
Adelic index
Adelic genus
Nonmax$\ \ell$
include
exclude
exactly
subset
$abc$ quality
Szpiro ratio
Manin constant
Sort order
Select
Search again
Random curve
▲ conductor
rank
torsion
CM discriminant
regulator
analytic Ш
isogeny class size
isogeny class degree
integral points
modular degree
adelic level
adelic index
adelic genus
Faltings height
$abc$ quality
Szpiro ratio
columns to display
✓ LMFDB curve label
Cremona curve label
✓ LMFDB class label
Cremona class label
class size
class degree
✓ conductor
discriminant
✓ rank
✓ torsion
Qbar-end algebra
✓ CM discriminant
Sato-Tate group
semistable
potentially good
nonmaximal primes
ℓ-adic images
mod-ℓ images
adelic level
adelic index
adelic genus
regulator
analytic Ш
ш primes
integral points
modular degree
Faltings height
j-invariant
abc quality
szpiro ratio
Weierstrass coeffs
✓ Weierstrass equation
mod-m images
mw-generators
show all
Results (4 matches)
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
Label
Cremona label
Class
Cremona class
Class size
Class degree
Conductor
Discriminant
Rank
Torsion
$\textrm{End}^0(E_{\overline\Q})$
CM
Sato-Tate
Semistable
Potentially good
Nonmax $\ell$
$\ell$-adic images
mod-$\ell$ images
Adelic level
Adelic index
Adelic genus
Regulator
$Ш_{\textrm{an}}$
Ш primes
Integral points
Modular degree
Faltings height
j-invariant
$abc$ quality
Szpiro ratio
Weierstrass coefficients
Weierstrass equation
mod-$m$ images
MW-generators
728.a1
728d1
728.a
728d
$1$
$1$
\( 2^{3} \cdot 7 \cdot 13 \)
\( - 2^{8} \cdot 7^{3} \cdot 13 \)
$1$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
$182$
$2$
$0$
$0.127113925$
$1$
$8$
$96$
$-0.158746$
$-1024/4459$
$0.96270$
$3.24761$
$[0, 1, 0, -1, 51]$
\(y^2=x^3+x^2-x+51\)
182.2.0.?
$[(5, 14)]$
728.b1
728a1
728.b
728a
$1$
$1$
\( 2^{3} \cdot 7 \cdot 13 \)
\( - 2^{11} \cdot 7 \cdot 13 \)
$0$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
$728$
$2$
$0$
$1$
$1$
$0$
$48$
$-0.301737$
$-31250/91$
$0.83978$
$3.00008$
$[0, -1, 0, -8, -20]$
\(y^2=x^3-x^2-8x-20\)
728.2.0.?
$[ ]$
728.c1
728c1
728.c
728c
$1$
$1$
\( 2^{3} \cdot 7 \cdot 13 \)
\( - 2^{8} \cdot 7 \cdot 13^{3} \)
$1$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
$182$
$2$
$0$
$0.421518436$
$1$
$6$
$96$
$0.002399$
$-135834624/15379$
$0.86662$
$3.71012$
$[0, 0, 0, -68, -236]$
\(y^2=x^3-68x-236\)
182.2.0.?
$[(12, 26)]$
728.d1
728b1
728.d
728b
$1$
$1$
\( 2^{3} \cdot 7 \cdot 13 \)
\( - 2^{8} \cdot 7 \cdot 13^{7} \)
$0$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
$182$
$2$
$0$
$1$
$1$
$0$
$672$
$0.808213$
$530208386048/439239619$
$0.96694$
$4.93782$
$[0, -1, 0, 1071, 8501]$
\(y^2=x^3-x^2+1071x+8501\)
182.2.0.?
$[ ]$
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV