Learn more

Refine search


Results (42 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
72504.a1 72504.a \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $0.255442947$ $[0, 0, 0, -14439, 642634]$ \(y^2=x^3-14439x+642634\) 6042.2.0.? $[(-19, 954)]$
72504.b1 72504.b \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $0.232337629$ $[0, 0, 0, -2199, 39674]$ \(y^2=x^3-2199x+39674\) 6042.2.0.? $[(25, 18)]$
72504.c1 72504.c \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $0.464934253$ $[0, 0, 0, -161514, -18853911]$ \(y^2=x^3-161514x-18853911\) 6042.2.0.? $[(-140, 1007)]$
72504.d1 72504.d \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -7555251, 7993210030]$ \(y^2=x^3-7555251x+7993210030\) 2.3.0.a.1, 24.6.0.a.1, 4028.6.0.?, 24168.12.0.? $[ ]$
72504.d2 72504.d \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -469371, 126466054]$ \(y^2=x^3-469371x+126466054\) 2.3.0.a.1, 24.6.0.d.1, 2014.6.0.?, 24168.12.0.? $[ ]$
72504.e1 72504.e \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 429, 4430]$ \(y^2=x^3+429x+4430\) 8056.2.0.? $[ ]$
72504.f1 72504.f \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\Z/2\Z$ $2.664211393$ $[0, 0, 0, -19371, 547414]$ \(y^2=x^3-19371x+547414\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 76.12.0.?, 114.6.0.?, $\ldots$ $[(-25, 1008)]$
72504.f2 72504.f \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.328422787$ $[0, 0, 0, -9111, -328790]$ \(y^2=x^3-9111x-328790\) 2.6.0.a.1, 12.12.0-2.a.1.1, 76.12.0.?, 212.12.0.?, 228.24.0.?, $\ldots$ $[(7742, 681156)]$
72504.f3 72504.f \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\Z/2\Z$ $10.65684557$ $[0, 0, 0, -9066, -332255]$ \(y^2=x^3-9066x-332255\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 76.12.0.?, 424.12.0.?, $\ldots$ $[(123929/8, 43573635/8)]$
72504.f4 72504.f \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\Z/2\Z$ $2.664211393$ $[0, 0, 0, 429, -983234]$ \(y^2=x^3+429x-983234\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 152.12.0.?, 212.12.0.?, $\ldots$ $[(326, 5814)]$
72504.g1 72504.g \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $2$ $\Z/2\Z$ $12.54036074$ $[0, 0, 0, -21891, -1227170]$ \(y^2=x^3-21891x-1227170\) 2.3.0.a.1, 228.6.0.?, 424.6.0.?, 24168.12.0.? $[(230, 2430), (-78, 76)]$
72504.g2 72504.g \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $2$ $\Z/2\Z$ $3.135090185$ $[0, 0, 0, -2811, 28294]$ \(y^2=x^3-2811x+28294\) 2.3.0.a.1, 114.6.0.?, 424.6.0.?, 24168.12.0.? $[(71, 432), (-6, 212)]$
72504.h1 72504.h \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\Z/2\Z$ $2.042660847$ $[0, 0, 0, -184251, 30437750]$ \(y^2=x^3-184251x+30437750\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.1, 152.12.0.?, 424.12.0.?, $\ldots$ $[(478, 7182)]$
72504.h2 72504.h \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\Z/2\Z$ $8.170643388$ $[0, 0, 0, -74091, -7455994]$ \(y^2=x^3-74091x-7455994\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.2, 152.12.0.?, 228.12.0.?, $\ldots$ $[(8113/4, 591255/4)]$
72504.h3 72504.h \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.085321694$ $[0, 0, 0, -12531, 386750]$ \(y^2=x^3-12531x+386750\) 2.6.0.a.1, 24.12.0-2.a.1.1, 152.12.0.?, 228.12.0.?, 424.12.0.?, $\ldots$ $[(475, 10080)]$
72504.h4 72504.h \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\Z/2\Z$ $2.042660847$ $[0, 0, 0, 2049, 39746]$ \(y^2=x^3+2049x+39746\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.6, 152.12.0.?, 228.12.0.?, $\ldots$ $[(-11, 126)]$
72504.i1 72504.i \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -3411, 76670]$ \(y^2=x^3-3411x+76670\) 2.3.0.a.1, 228.6.0.?, 636.6.0.?, 4028.6.0.?, 12084.12.0.? $[ ]$
72504.i2 72504.i \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -231, 986]$ \(y^2=x^3-231x+986\) 2.3.0.a.1, 114.6.0.?, 636.6.0.?, 4028.6.0.?, 12084.12.0.? $[ ]$
72504.j1 72504.j \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $2$ $\mathsf{trivial}$ $0.399154394$ $[0, 0, 0, -903, 9866]$ \(y^2=x^3-903x+9866\) 6042.2.0.? $[(25, 54), (13, 18)]$
72504.k1 72504.k \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $1.840925928$ $[0, 0, 0, -1458, -21411]$ \(y^2=x^3-1458x-21411\) 6042.2.0.? $[(-87/2, 27/2)]$
72504.l1 72504.l \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $0.224857140$ $[0, 0, 0, -4638, 120629]$ \(y^2=x^3-4638x+120629\) 6042.2.0.? $[(-50, 477)]$
72504.m1 72504.m \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $3.373609933$ $[0, 0, 0, -21963, -942986]$ \(y^2=x^3-21963x-942986\) 6042.2.0.? $[(167, 216)]$
72504.n1 72504.n \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $1.131054866$ $[0, 0, 0, -13503, 145906]$ \(y^2=x^3-13503x+145906\) 6042.2.0.? $[(-25, 684)]$
72504.o1 72504.o \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -852483, 302936366]$ \(y^2=x^3-852483x+302936366\) 6042.2.0.? $[ ]$
72504.p1 72504.p \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $0.672092409$ $[0, 0, 0, -396738, 96154101]$ \(y^2=x^3-396738x+96154101\) 6042.2.0.? $[(273, 2862)]$
72504.q1 72504.q \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $1.212169150$ $[0, 0, 0, -363, 1366]$ \(y^2=x^3-363x+1366\) 6042.2.0.? $[(23, 72)]$
72504.r1 72504.r \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\Z/2\Z$ $9.410204969$ $[0, 0, 0, -1054515, -410637058]$ \(y^2=x^3-1054515x-410637058\) 2.3.0.a.1, 8.6.0.d.1, 114.6.0.?, 456.12.0.? $[(-297274/23, 25784818/23)]$
72504.r2 72504.r \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\Z/2\Z$ $18.82040993$ $[0, 0, 0, -43275, -1165224346]$ \(y^2=x^3-43275x-1165224346\) 2.3.0.a.1, 8.6.0.a.1, 228.6.0.?, 456.12.0.? $[(981961070/391, 30687077651042/391)]$
72504.s1 72504.s \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $1.211067487$ $[0, 0, 0, -156135, 34154359]$ \(y^2=x^3-156135x+34154359\) 2014.2.0.? $[(217/3, 148877/3)]$
72504.t1 72504.t \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -387327, -92782222]$ \(y^2=x^3-387327x-92782222\) 6042.2.0.? $[ ]$
72504.u1 72504.u \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $0.415160610$ $[0, 0, 0, -162, 793]$ \(y^2=x^3-162x+793\) 6042.2.0.? $[(8, 3)]$
72504.v1 72504.v \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $2.411924252$ $[0, 0, 0, -1542, 2833]$ \(y^2=x^3-1542x+2833\) 6042.2.0.? $[(-16, 153)]$
72504.w1 72504.w \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -641483247, 6249343450498]$ \(y^2=x^3-641483247x+6249343450498\) 6042.2.0.? $[ ]$
72504.x1 72504.x \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $6.415480237$ $[0, 0, 0, -44082, -3561263]$ \(y^2=x^3-44082x-3561263\) 6042.2.0.? $[(1376, 50409)]$
72504.y1 72504.y \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $3.485732255$ $[0, 0, 0, -86862, 9851353]$ \(y^2=x^3-86862x+9851353\) 6042.2.0.? $[(168, 13)]$
72504.z1 72504.z \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -30699, -2070090]$ \(y^2=x^3-30699x-2070090\) 2.3.0.a.1, 228.6.0.?, 636.6.0.?, 4028.6.0.?, 12084.12.0.? $[ ]$
72504.z2 72504.z \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -2079, -26622]$ \(y^2=x^3-2079x-26622\) 2.3.0.a.1, 114.6.0.?, 636.6.0.?, 4028.6.0.?, 12084.12.0.? $[ ]$
72504.ba1 72504.ba \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -204771, -32362418]$ \(y^2=x^3-204771x-32362418\) 6042.2.0.? $[ ]$
72504.bb1 72504.bb \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $1.255416730$ $[0, 0, 0, -246, 1213]$ \(y^2=x^3-246x+1213\) 6042.2.0.? $[(2, 27)]$
72504.bc1 72504.bc \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $5.958610853$ $[0, 0, 0, -2162766, 1224225133]$ \(y^2=x^3-2162766x+1224225133\) 6042.2.0.? $[(-598, 47997)]$
72504.bd1 72504.bd \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -215076, -41440268]$ \(y^2=x^3-215076x-41440268\) 38.2.0.a.1 $[ ]$
72504.be1 72504.be \( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $0.901448462$ $[0, 0, 0, -17946, 698293]$ \(y^2=x^3-17946x+698293\) 6042.2.0.? $[(-118, 1083)]$
  displayed columns for results