| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 71094.a1 |
71094d2 |
71094.a |
71094d |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( 2 \cdot 3 \cdot 17^{9} \cdot 41^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$16728$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$818176$ |
$1.769226$ |
$3921887033/10086$ |
$0.87215$ |
$4.25974$ |
$[1, 1, 0, -161412, -24972270]$ |
\(y^2+xy=x^3+x^2-161412x-24972270\) |
2.3.0.a.1, 408.6.0.?, 984.6.0.?, 2788.6.0.?, 16728.12.0.? |
$[ ]$ |
| 71094.a2 |
71094d1 |
71094.a |
71094d |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( 2^{2} \cdot 3^{2} \cdot 17^{9} \cdot 41 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$16728$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$409088$ |
$1.422651$ |
$2571353/1476$ |
$0.87784$ |
$3.60363$ |
$[1, 1, 0, -14022, -63360]$ |
\(y^2+xy=x^3+x^2-14022x-63360\) |
2.3.0.a.1, 408.6.0.?, 984.6.0.?, 1394.6.0.?, 16728.12.0.? |
$[ ]$ |
| 71094.b1 |
71094c1 |
71094.b |
71094c |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2 \cdot 3^{3} \cdot 17^{6} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$16728$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$100800$ |
$0.742401$ |
$-389017/2214$ |
$0.87552$ |
$2.88705$ |
$[1, 1, 0, -439, 11491]$ |
\(y^2+xy=x^3+x^2-439x+11491\) |
3.4.0.a.1, 51.8.0-3.a.1.2, 984.8.0.?, 16728.16.0.? |
$[ ]$ |
| 71094.b2 |
71094c2 |
71094.b |
71094c |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2^{3} \cdot 3 \cdot 17^{6} \cdot 41^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$16728$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$302400$ |
$1.291708$ |
$270840023/1654104$ |
$0.95436$ |
$3.46169$ |
$[1, 1, 0, 3896, -287624]$ |
\(y^2+xy=x^3+x^2+3896x-287624\) |
3.4.0.a.1, 51.8.0-3.a.1.1, 984.8.0.?, 16728.16.0.? |
$[ ]$ |
| 71094.c1 |
71094e1 |
71094.c |
71094e |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2 \cdot 3^{6} \cdot 17^{4} \cdot 41 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$328$ |
$2$ |
$0$ |
$1.017181813$ |
$1$ |
|
$6$ |
$35424$ |
$0.541452$ |
$3516263/59778$ |
$0.89218$ |
$2.66308$ |
$[1, 1, 0, 139, 3399]$ |
\(y^2+xy=x^3+x^2+139x+3399\) |
328.2.0.? |
$[(35, 212), (59/2, 697/2)]$ |
| 71094.d1 |
71094a1 |
71094.d |
71094a |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2^{8} \cdot 3 \cdot 17^{3} \cdot 41^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4182$ |
$2$ |
$0$ |
$2.180821537$ |
$1$ |
|
$2$ |
$95232$ |
$0.897481$ |
$-120334284953/52931328$ |
$1.02955$ |
$3.09517$ |
$[1, 1, 0, -1748, -38064]$ |
\(y^2+xy=x^3+x^2-1748x-38064\) |
4182.2.0.? |
$[(120, 1164)]$ |
| 71094.e1 |
71094b1 |
71094.e |
71094b |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( 2^{14} \cdot 3^{12} \cdot 17^{6} \cdot 41 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$328$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$8601600$ |
$3.130985$ |
$10341755683137709164937/356992303104$ |
$1.06164$ |
$6.05901$ |
$[1, 1, 0, -131176094, -578323968780]$ |
\(y^2+xy=x^3+x^2-131176094x-578323968780\) |
2.3.0.a.1, 8.6.0.d.1, 82.6.0.?, 328.12.0.? |
$[ ]$ |
| 71094.e2 |
71094b2 |
71094.e |
71094b |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2^{7} \cdot 3^{24} \cdot 17^{6} \cdot 41^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$328$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$17203200$ |
$3.477562$ |
$-10298071306410575356297/60769798505543808$ |
$1.06173$ |
$6.05954$ |
$[1, 1, 0, -130991134, -580035921548]$ |
\(y^2+xy=x^3+x^2-130991134x-580035921548\) |
2.3.0.a.1, 8.6.0.a.1, 164.6.0.?, 328.12.0.? |
$[ ]$ |
| 71094.f1 |
71094g1 |
71094.f |
71094g |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2^{11} \cdot 3 \cdot 17^{6} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$984$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$210496$ |
$1.229017$ |
$-7916293657/251904$ |
$0.93151$ |
$3.56658$ |
$[1, 0, 1, -12000, -520658]$ |
\(y^2+xy+y=x^3-12000x-520658\) |
984.2.0.? |
$[ ]$ |
| 71094.g1 |
71094h1 |
71094.g |
71094h |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2^{26} \cdot 3 \cdot 17^{7} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2336256$ |
$2.234734$ |
$-466025146777/140324634624$ |
$0.97837$ |
$4.48659$ |
$[1, 0, 1, -46680, 88627750]$ |
\(y^2+xy+y=x^3-46680x+88627750\) |
4182.2.0.? |
$[ ]$ |
| 71094.h1 |
71094l1 |
71094.h |
71094l |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2^{10} \cdot 3^{3} \cdot 17^{7} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4182$ |
$2$ |
$0$ |
$4.024473003$ |
$1$ |
|
$2$ |
$345600$ |
$1.697044$ |
$-8641627880761/19270656$ |
$0.89832$ |
$4.18831$ |
$[1, 0, 1, -123554, -16758412]$ |
\(y^2+xy+y=x^3-123554x-16758412\) |
4182.2.0.? |
$[(10989, 1145881)]$ |
| 71094.i1 |
71094f2 |
71094.i |
71094f |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( 2 \cdot 3^{2} \cdot 17^{8} \cdot 41^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$5576$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$221184$ |
$1.502056$ |
$149298747625/8744562$ |
$0.86554$ |
$3.82469$ |
$[1, 0, 1, -31941, 2080342]$ |
\(y^2+xy+y=x^3-31941x+2080342\) |
2.3.0.a.1, 8.6.0.b.1, 2788.6.0.?, 5576.12.0.? |
$[ ]$ |
| 71094.i2 |
71094f1 |
71094.i |
71094f |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( 2^{2} \cdot 3^{4} \cdot 17^{7} \cdot 41 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$5576$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$110592$ |
$1.155481$ |
$955671625/225828$ |
$0.81706$ |
$3.37254$ |
$[1, 0, 1, -5931, -135710]$ |
\(y^2+xy+y=x^3-5931x-135710\) |
2.3.0.a.1, 8.6.0.c.1, 1394.6.0.?, 5576.12.0.? |
$[ ]$ |
| 71094.j1 |
71094j1 |
71094.j |
71094j |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( 2^{14} \cdot 3^{2} \cdot 17^{7} \cdot 41^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$136$ |
$12$ |
$0$ |
$11.35173628$ |
$1$ |
|
$1$ |
$1032192$ |
$2.249832$ |
$16609676962173625/4213850112$ |
$0.94644$ |
$4.86477$ |
$[1, 0, 1, -1536186, -732814868]$ |
\(y^2+xy+y=x^3-1536186x-732814868\) |
2.3.0.a.1, 8.6.0.d.1, 34.6.0.a.1, 136.12.0.? |
$[(8852617/24, 26145019751/24)]$ |
| 71094.j2 |
71094j2 |
71094.j |
71094j |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2^{7} \cdot 3^{4} \cdot 17^{8} \cdot 41^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$136$ |
$12$ |
$0$ |
$5.675868141$ |
$1$ |
|
$0$ |
$2064384$ |
$2.596405$ |
$-11303519856765625/8466974623872$ |
$0.99596$ |
$4.90466$ |
$[1, 0, 1, -1351226, -915851284]$ |
\(y^2+xy+y=x^3-1351226x-915851284\) |
2.3.0.a.1, 8.6.0.a.1, 68.6.0.c.1, 136.12.0.? |
$[(53683/6, 4080785/6)]$ |
| 71094.k1 |
71094k1 |
71094.k |
71094k |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2^{8} \cdot 3 \cdot 17^{9} \cdot 41^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4182$ |
$2$ |
$0$ |
$5.217610887$ |
$1$ |
|
$0$ |
$1618944$ |
$2.314087$ |
$-120334284953/52931328$ |
$1.02955$ |
$4.61680$ |
$[1, 0, 1, -505323, -183471530]$ |
\(y^2+xy+y=x^3-505323x-183471530\) |
4182.2.0.? |
$[(421831/21, 129317656/21)]$ |
| 71094.l1 |
71094n1 |
71094.l |
71094n |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( 2^{6} \cdot 3^{4} \cdot 17^{6} \cdot 41 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$328$ |
$12$ |
$0$ |
$1.944464995$ |
$1$ |
|
$5$ |
$245760$ |
$1.274742$ |
$32553430057/212544$ |
$0.94292$ |
$3.68836$ |
$[1, 0, 1, -19225, 1018556]$ |
\(y^2+xy+y=x^3-19225x+1018556\) |
2.3.0.a.1, 8.6.0.d.1, 82.6.0.?, 328.12.0.? |
$[(67, 146)]$ |
| 71094.l2 |
71094n2 |
71094.l |
71094n |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2^{3} \cdot 3^{8} \cdot 17^{6} \cdot 41^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$328$ |
$12$ |
$0$ |
$0.972232497$ |
$1$ |
|
$6$ |
$491520$ |
$1.621317$ |
$-2062933417/88232328$ |
$1.00890$ |
$3.82777$ |
$[1, 0, 1, -7665, 2234668]$ |
\(y^2+xy+y=x^3-7665x+2234668\) |
2.3.0.a.1, 8.6.0.a.1, 164.6.0.?, 328.12.0.? |
$[(-112, 1356)]$ |
| 71094.m1 |
71094m1 |
71094.m |
71094m |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2 \cdot 3^{6} \cdot 17^{10} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$328$ |
$2$ |
$0$ |
$4.529917889$ |
$1$ |
|
$2$ |
$602208$ |
$1.958059$ |
$3516263/59778$ |
$0.89218$ |
$4.18471$ |
$[1, 0, 1, 40020, 16418788]$ |
\(y^2+xy+y=x^3+40020x+16418788\) |
328.2.0.? |
$[(-172, 2196)]$ |
| 71094.n1 |
71094i2 |
71094.n |
71094i |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( 2 \cdot 3 \cdot 17^{3} \cdot 41^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$16728$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$48128$ |
$0.352619$ |
$3921887033/10086$ |
$0.87215$ |
$2.73811$ |
$[1, 0, 1, -559, -5116]$ |
\(y^2+xy+y=x^3-559x-5116\) |
2.3.0.a.1, 408.6.0.?, 984.6.0.?, 2788.6.0.?, 16728.12.0.? |
$[ ]$ |
| 71094.n2 |
71094i1 |
71094.n |
71094i |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( 2^{2} \cdot 3^{2} \cdot 17^{3} \cdot 41 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$16728$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$24064$ |
$0.006045$ |
$2571353/1476$ |
$0.87784$ |
$2.08200$ |
$[1, 0, 1, -49, -16]$ |
\(y^2+xy+y=x^3-49x-16\) |
2.3.0.a.1, 408.6.0.?, 984.6.0.?, 1394.6.0.?, 16728.12.0.? |
$[ ]$ |
| 71094.o1 |
71094s1 |
71094.o |
71094s |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2^{24} \cdot 3^{17} \cdot 17^{9} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4182$ |
$2$ |
$0$ |
$7.779287443$ |
$1$ |
|
$0$ |
$73688064$ |
$4.196907$ |
$-9077389327259968317569/88831108765974528$ |
$1.03084$ |
$6.80965$ |
$[1, 1, 1, -2135137497, -38294664483993]$ |
\(y^2+xy+y=x^3+x^2-2135137497x-38294664483993\) |
4182.2.0.? |
$[(10178215/3, 32429084152/3)]$ |
| 71094.p1 |
71094r2 |
71094.p |
71094r |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2^{6} \cdot 3^{3} \cdot 17^{21} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4182$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$229547520$ |
$4.627930$ |
$-1943299427371886688757286977/202796948353367429302464$ |
$1.03647$ |
$7.16085$ |
$[1, 1, 1, -7513400042, -272338727055433]$ |
\(y^2+xy+y=x^3+x^2-7513400042x-272338727055433\) |
3.4.0.a.1, 51.8.0-3.a.1.1, 246.8.0.?, 4182.16.0.? |
$[ ]$ |
| 71094.p2 |
71094r1 |
71094.p |
71094r |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2^{18} \cdot 3^{9} \cdot 17^{11} \cdot 41^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4182$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$76515840$ |
$4.078621$ |
$867642675558875264539583/504925601466378092544$ |
$1.06666$ |
$6.45551$ |
$[1, 1, 1, 574253398, 397012511927]$ |
\(y^2+xy+y=x^3+x^2+574253398x+397012511927\) |
3.4.0.a.1, 51.8.0-3.a.1.2, 246.8.0.?, 4182.16.0.? |
$[ ]$ |
| 71094.q1 |
71094t1 |
71094.q |
71094t |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2^{4} \cdot 3^{9} \cdot 17^{4} \cdot 41^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$0.510576920$ |
$1$ |
|
$6$ |
$264384$ |
$1.306494$ |
$700044875423/529393968$ |
$1.06941$ |
$3.45579$ |
$[1, 1, 1, 8086, 158375]$ |
\(y^2+xy+y=x^3+x^2+8086x+158375\) |
6.2.0.a.1 |
$[(35, 679)]$ |
| 71094.r1 |
71094p2 |
71094.r |
71094p |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2^{5} \cdot 3 \cdot 17^{6} \cdot 41^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$83640$ |
$48$ |
$1$ |
$1$ |
$25$ |
$5$ |
$0$ |
$6600000$ |
$3.111687$ |
$-21525971829968662032241/11122195296$ |
$1.06339$ |
$6.12462$ |
$[1, 1, 1, -167485621, -834354728773]$ |
\(y^2+xy+y=x^3+x^2-167485621x-834354728773\) |
5.12.0.a.2, 85.24.0.?, 984.2.0.?, 4920.24.1.?, 83640.48.1.? |
$[ ]$ |
| 71094.r2 |
71094p1 |
71094.r |
71094p |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2^{25} \cdot 3^{5} \cdot 17^{6} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$83640$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1320000$ |
$2.306969$ |
$-592915705201/334302806016$ |
$1.07782$ |
$4.56422$ |
$[1, 1, 1, -50581, -136761733]$ |
\(y^2+xy+y=x^3+x^2-50581x-136761733\) |
5.12.0.a.1, 85.24.0.?, 984.2.0.?, 4920.24.1.?, 83640.48.1.? |
$[ ]$ |
| 71094.s1 |
71094o1 |
71094.s |
71094o |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2^{7} \cdot 3^{2} \cdot 17^{2} \cdot 41 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$328$ |
$2$ |
$0$ |
$0.475260037$ |
$1$ |
|
$14$ |
$18144$ |
$0.051327$ |
$-4668625/47232$ |
$0.84405$ |
$2.14287$ |
$[1, 1, 1, -23, 173]$ |
\(y^2+xy+y=x^3+x^2-23x+173\) |
328.2.0.? |
$[(3, 10), (-3, 16)]$ |
| 71094.t1 |
71094q4 |
71094.t |
71094q |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( 2 \cdot 3^{8} \cdot 17^{6} \cdot 41 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$5576$ |
$48$ |
$0$ |
$1$ |
$16$ |
$2$ |
$0$ |
$491520$ |
$1.579748$ |
$9357915116017/538002$ |
$0.98265$ |
$4.19509$ |
$[1, 1, 1, -126877, -17446927]$ |
\(y^2+xy+y=x^3+x^2-126877x-17446927\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 136.24.0.?, 328.24.0.?, $\ldots$ |
$[ ]$ |
| 71094.t2 |
71094q2 |
71094.t |
71094q |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( 2^{2} \cdot 3^{4} \cdot 17^{6} \cdot 41^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.4 |
2Cs |
$5576$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$2$ |
$245760$ |
$1.233175$ |
$2703045457/544644$ |
$0.99714$ |
$3.46561$ |
$[1, 1, 1, -8387, -242179]$ |
\(y^2+xy+y=x^3+x^2-8387x-242179\) |
2.6.0.a.1, 8.12.0.b.1, 68.12.0-2.a.1.1, 136.24.0.?, 164.12.0.?, $\ldots$ |
$[ ]$ |
| 71094.t3 |
71094q1 |
71094.t |
71094q |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( 2^{4} \cdot 3^{2} \cdot 17^{6} \cdot 41 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$5576$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$122880$ |
$0.886601$ |
$81182737/5904$ |
$0.95826$ |
$3.15183$ |
$[1, 1, 1, -2607, 46821]$ |
\(y^2+xy+y=x^3+x^2-2607x+46821\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 68.12.0-4.c.1.2, 82.6.0.?, $\ldots$ |
$[ ]$ |
| 71094.t4 |
71094q3 |
71094.t |
71094q |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2 \cdot 3^{2} \cdot 17^{6} \cdot 41^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.16 |
2B |
$5576$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$491520$ |
$1.579748$ |
$25076571983/50863698$ |
$0.97224$ |
$3.74719$ |
$[1, 1, 1, 17623, -1417831]$ |
\(y^2+xy+y=x^3+x^2+17623x-1417831\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 68.12.0-4.c.1.1, 136.24.0.?, $\ldots$ |
$[ ]$ |
| 71094.u1 |
71094u1 |
71094.u |
71094u |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2^{8} \cdot 3^{3} \cdot 17^{8} \cdot 41^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$998784$ |
$2.110901$ |
$-3615377559553/11619072$ |
$0.91833$ |
$4.61767$ |
$[1, 1, 1, -610952, -184569847]$ |
\(y^2+xy+y=x^3+x^2-610952x-184569847\) |
6.2.0.a.1 |
$[ ]$ |
| 71094.v1 |
71094v4 |
71094.v |
71094v |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( 2 \cdot 3^{6} \cdot 17^{10} \cdot 41^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.15 |
2B |
$5576$ |
$48$ |
$0$ |
$7.636627543$ |
$1$ |
|
$0$ |
$4423680$ |
$2.896862$ |
$633965965023858193/344103140573298$ |
$0.99715$ |
$5.19077$ |
$[1, 0, 0, -5172239, -1128503625]$ |
\(y^2+xy=x^3-5172239x-1128503625\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 68.12.0-4.c.1.1, 136.24.0.?, $\ldots$ |
$[(-881/2, 89/2)]$ |
| 71094.v2 |
71094v2 |
71094.v |
71094v |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( 2^{2} \cdot 3^{12} \cdot 17^{8} \cdot 41^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.3 |
2Cs |
$5576$ |
$48$ |
$0$ |
$3.818313771$ |
$1$ |
|
$6$ |
$2211840$ |
$2.550289$ |
$131978739953834353/1032715283076$ |
$0.95723$ |
$5.05030$ |
$[1, 0, 0, -3065429, 2051515389]$ |
\(y^2+xy=x^3-3065429x+2051515389\) |
2.6.0.a.1, 8.12.0.a.1, 68.12.0-2.a.1.1, 136.24.0.?, 164.12.0.?, $\ldots$ |
$[(430, 28297)]$ |
| 71094.v3 |
71094v1 |
71094.v |
71094v |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( 2^{4} \cdot 3^{6} \cdot 17^{7} \cdot 41 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$5576$ |
$48$ |
$0$ |
$1.909156885$ |
$1$ |
|
$5$ |
$1105920$ |
$2.203712$ |
$131233591734941233/8129808$ |
$1.00450$ |
$5.04979$ |
$[1, 0, 0, -3059649, 2059689465]$ |
\(y^2+xy=x^3-3059649x+2059689465\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 68.12.0-4.c.1.2, 136.24.0.?, $\ldots$ |
$[(432, 28395)]$ |
| 71094.v4 |
71094v3 |
71094.v |
71094v |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2 \cdot 3^{24} \cdot 17^{7} \cdot 41 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$5576$ |
$48$ |
$0$ |
$7.636627543$ |
$1$ |
|
$0$ |
$4423680$ |
$2.896862$ |
$-5320605737038033/393706773854514$ |
$1.07011$ |
$5.19779$ |
$[1, 0, 0, -1051099, 4708416659]$ |
\(y^2+xy=x^3-1051099x+4708416659\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 136.24.0.?, 164.12.0.?, $\ldots$ |
$[(311513/16, 293769851/16)]$ |
| 71094.w1 |
71094w1 |
71094.w |
71094w |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2^{8} \cdot 3^{3} \cdot 17^{2} \cdot 41^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$0.742425949$ |
$1$ |
|
$6$ |
$58752$ |
$0.694295$ |
$-3615377559553/11619072$ |
$0.91833$ |
$3.09604$ |
$[1, 0, 0, -2114, -37692]$ |
\(y^2+xy=x^3-2114x-37692\) |
6.2.0.a.1 |
$[(76, 454)]$ |
| 71094.x1 |
71094y1 |
71094.x |
71094y |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2^{3} \cdot 3^{7} \cdot 17^{6} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$984$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$369600$ |
$1.513559$ |
$-2177286259681/717336$ |
$0.97361$ |
$4.06462$ |
$[1, 0, 0, -78036, -8399448]$ |
\(y^2+xy=x^3-78036x-8399448\) |
984.2.0.? |
$[ ]$ |
| 71094.y1 |
71094z1 |
71094.y |
71094z |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2^{2} \cdot 3^{3} \cdot 17^{11} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1036800$ |
$1.977352$ |
$-243087455521/6287126796$ |
$1.08336$ |
$4.21043$ |
$[1, 0, 0, -37576, 18948044]$ |
\(y^2+xy=x^3-37576x+18948044\) |
4182.2.0.? |
$[ ]$ |
| 71094.z1 |
71094bc1 |
71094.z |
71094bc |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2^{7} \cdot 3^{2} \cdot 17^{8} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$328$ |
$2$ |
$0$ |
$0.630967495$ |
$1$ |
|
$4$ |
$308448$ |
$1.467934$ |
$-4668625/47232$ |
$0.84405$ |
$3.66450$ |
$[1, 0, 0, -6653, 897393]$ |
\(y^2+xy=x^3-6653x+897393\) |
328.2.0.? |
$[(24, 855)]$ |
| 71094.ba1 |
71094ba1 |
71094.ba |
71094ba |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2^{4} \cdot 3^{9} \cdot 17^{10} \cdot 41^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4494528$ |
$2.723099$ |
$700044875423/529393968$ |
$1.06941$ |
$4.97742$ |
$[1, 0, 0, 2336848, 761739312]$ |
\(y^2+xy=x^3+2336848x+761739312\) |
6.2.0.a.1 |
$[ ]$ |
| 71094.bb1 |
71094x1 |
71094.bb |
71094x |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2^{24} \cdot 3^{17} \cdot 17^{3} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4182$ |
$2$ |
$0$ |
$0.425618748$ |
$1$ |
|
$6$ |
$4334592$ |
$2.780300$ |
$-9077389327259968317569/88831108765974528$ |
$1.03084$ |
$5.28802$ |
$[1, 0, 0, -7388019, -7794992799]$ |
\(y^2+xy=x^3-7388019x-7794992799\) |
4182.2.0.? |
$[(7470, 591129)]$ |
| 71094.bc1 |
71094bb1 |
71094.bc |
71094bb |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( 2^{10} \cdot 3^{2} \cdot 17^{7} \cdot 41 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$5576$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$737280$ |
$1.495440$ |
$191202526081/6423552$ |
$0.86716$ |
$3.84683$ |
$[1, 0, 0, -34686, 2410308]$ |
\(y^2+xy=x^3-34686x+2410308\) |
2.3.0.a.1, 8.6.0.d.1, 1394.6.0.?, 5576.12.0.? |
$[ ]$ |
| 71094.bc2 |
71094bb2 |
71094.bc |
71094bb |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2^{5} \cdot 3^{4} \cdot 17^{8} \cdot 41^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$5576$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1474560$ |
$1.842014$ |
$7066834559/1259216928$ |
$0.94378$ |
$4.06422$ |
$[1, 0, 0, 11554, 8375268]$ |
\(y^2+xy=x^3+11554x+8375268\) |
2.3.0.a.1, 8.6.0.a.1, 2788.6.0.?, 5576.12.0.? |
$[ ]$ |