Learn more

Refine search


Results (24 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
67335.a1 67335.a \( 3 \cdot 5 \cdot 67^{2} \) $1$ $\mathsf{trivial}$ $1.523271457$ $[0, -1, 1, -33656, -2496844]$ \(y^2+y=x^3-x^2-33656x-2496844\) 134.2.0.? $[(313, 4187)]$
67335.b1 67335.b \( 3 \cdot 5 \cdot 67^{2} \) $1$ $\mathsf{trivial}$ $7.218450548$ $[0, -1, 1, -1303306, -609510144]$ \(y^2+y=x^3-x^2-1303306x-609510144\) 6.2.0.a.1 $[(14588, 1756312)]$
67335.c1 67335.c \( 3 \cdot 5 \cdot 67^{2} \) $1$ $\Z/2\Z$ $6.363633566$ $[1, 1, 1, -122830356, 523889558244]$ \(y^2+xy+y=x^3+x^2-122830356x+523889558244\) 2.3.0.a.1, 60.6.0.d.1, 402.6.0.?, 1340.6.0.?, 4020.12.0.? $[(6339, 2970)]$
67335.c2 67335.c \( 3 \cdot 5 \cdot 67^{2} \) $1$ $\Z/2\Z$ $12.72726713$ $[1, 1, 1, -115311281, 590836394414]$ \(y^2+xy+y=x^3+x^2-115311281x+590836394414\) 2.3.0.a.1, 60.6.0.d.1, 670.6.0.?, 804.6.0.?, 4020.12.0.? $[(326119/2, 184391479/2)]$
67335.d1 67335.d \( 3 \cdot 5 \cdot 67^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -4028971, -2595888760]$ \(y^2+xy=x^3-4028971x-2595888760\) 2.3.0.a.1, 60.6.0.d.1, 402.6.0.?, 1340.6.0.?, 4020.12.0.? $[ ]$
67335.d2 67335.d \( 3 \cdot 5 \cdot 67^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 482474, -232793869]$ \(y^2+xy=x^3+482474x-232793869\) 2.3.0.a.1, 60.6.0.d.1, 670.6.0.?, 804.6.0.?, 4020.12.0.? $[ ]$
67335.e1 67335.e \( 3 \cdot 5 \cdot 67^{2} \) $1$ $\Z/2\Z$ $1.933314959$ $[1, 0, 0, -1335571, 547309040]$ \(y^2+xy=x^3-1335571x+547309040\) 2.3.0.a.1, 20.6.0.b.1, 402.6.0.?, 4020.12.0.? $[(4796, 320810)]$
67335.e2 67335.e \( 3 \cdot 5 \cdot 67^{2} \) $1$ $\Z/2\Z$ $3.866629918$ $[1, 0, 0, 1470054, 2543230665]$ \(y^2+xy=x^3+1470054x+2543230665\) 2.3.0.a.1, 20.6.0.a.1, 804.6.0.?, 4020.12.0.? $[(-849/2, 377925/2)]$
67335.f1 67335.f \( 3 \cdot 5 \cdot 67^{2} \) $1$ $\mathsf{trivial}$ $1.457623570$ $[0, -1, 1, -13472985, 21028830023]$ \(y^2+y=x^3-x^2-13472985x+21028830023\) 3.4.0.a.1, 6.8.0-3.a.1.2, 134.2.0.?, 201.8.0.?, 402.16.0.? $[(849, 101002)]$
67335.f2 67335.f \( 3 \cdot 5 \cdot 67^{2} \) $1$ $\mathsf{trivial}$ $4.372870710$ $[0, -1, 1, 1071375, -65218894]$ \(y^2+y=x^3-x^2+1071375x-65218894\) 3.4.0.a.1, 6.8.0-3.a.1.1, 134.2.0.?, 201.8.0.?, 402.16.0.? $[(318765/2, 179986451/2)]$
67335.g1 67335.g \( 3 \cdot 5 \cdot 67^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -897, 8256]$ \(y^2+xy=x^3+x^2-897x+8256\) 2.3.0.a.1, 60.6.0.d.1, 402.6.0.?, 1340.6.0.?, 4020.12.0.? $[ ]$
67335.g2 67335.g \( 3 \cdot 5 \cdot 67^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 108, 819]$ \(y^2+xy=x^3+x^2+108x+819\) 2.3.0.a.1, 60.6.0.d.1, 670.6.0.?, 804.6.0.?, 4020.12.0.? $[ ]$
67335.h1 67335.h \( 3 \cdot 5 \cdot 67^{2} \) $1$ $\Z/2\Z$ $12.26408137$ $[1, 0, 1, -9696334, 11620618247]$ \(y^2+xy+y=x^3-9696334x+11620618247\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 10.6.0.a.1, 16.48.0.x.2, $\ldots$ $[(42638143/154, -3248058379/154)]$
67335.h2 67335.h \( 3 \cdot 5 \cdot 67^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $6.132040686$ $[1, 0, 1, -606109, 181479107]$ \(y^2+xy+y=x^3-606109x+181479107\) 2.6.0.a.1, 4.12.0.b.1, 8.48.0.k.1, 20.24.0.c.1, 40.96.1.cc.2, $\ldots$ $[(21289/7, 79757/7)]$
67335.h3 67335.h \( 3 \cdot 5 \cdot 67^{2} \) $1$ $\Z/2\Z$ $3.066020343$ $[1, 0, 1, -493884, 250789267]$ \(y^2+xy+y=x^3-493884x+250789267\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.2, 16.48.0.u.2, 20.12.0.h.1, $\ldots$ $[(61595/2, 15209979/2)]$
67335.h4 67335.h \( 3 \cdot 5 \cdot 67^{2} \) $1$ $\Z/2\Z$ $49.05632549$ $[1, 0, 1, -359214, -82896059]$ \(y^2+xy+y=x^3-359214x-82896059\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 24.24.0.by.2, $\ldots$ $[(-41691781849732828157321/10976400162, 233037333142511562484879815997093/10976400162)]$
67335.h5 67335.h \( 3 \cdot 5 \cdot 67^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $12.26408137$ $[1, 0, 1, -44984, 1694657]$ \(y^2+xy+y=x^3-44984x+1694657\) 2.6.0.a.1, 4.24.0.b.1, 8.48.0.b.2, 24.96.1.n.1, 40.96.1.s.1, $\ldots$ $[(-1121949/91, 1786643494/91)]$
67335.h6 67335.h \( 3 \cdot 5 \cdot 67^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $24.52816274$ $[1, 0, 1, -22539, -1286039]$ \(y^2+xy+y=x^3-22539x-1286039\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.i.1, 16.48.0.d.2, 24.48.0.bb.2, $\ldots$ $[(-98082499759/34489, 6434153624300583/34489)]$
67335.h7 67335.h \( 3 \cdot 5 \cdot 67^{2} \) $1$ $\Z/2\Z$ $49.05632549$ $[1, 0, 1, -94, -56053]$ \(y^2+xy+y=x^3-94x-56053\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 24.24.0.bz.1, $\ldots$ $[(1820699650548839722503/2817371921, 74905268403088672080439152872684/2817371921)]$
67335.h8 67335.h \( 3 \cdot 5 \cdot 67^{2} \) $1$ $\Z/2\Z$ $24.52816274$ $[1, 0, 1, 157021, 12764531]$ \(y^2+xy+y=x^3+157021x+12764531\) 2.3.0.a.1, 4.12.0.d.1, 8.48.0.n.2, 24.96.1.cv.2, 80.96.1.?, $\ldots$ $[(383127971223/63154, 1338047345264198197/63154)]$
67335.i1 67335.i \( 3 \cdot 5 \cdot 67^{2} \) $1$ $\Z/2\Z$ $3.553518987$ $[1, 0, 1, -27363, -1744319]$ \(y^2+xy+y=x^3-27363x-1744319\) 2.3.0.a.1, 60.6.0.d.1, 402.6.0.?, 1340.6.0.?, 4020.12.0.? $[(2903/2, 149049/2)]$
67335.i2 67335.i \( 3 \cdot 5 \cdot 67^{2} \) $1$ $\Z/2\Z$ $7.107037975$ $[1, 0, 1, -25688, -1966759]$ \(y^2+xy+y=x^3-25688x-1966759\) 2.3.0.a.1, 60.6.0.d.1, 670.6.0.?, 804.6.0.?, 4020.12.0.? $[(21993/8, 2707481/8)]$
67335.j1 67335.j \( 3 \cdot 5 \cdot 67^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -290, 1931]$ \(y^2+y=x^3+x^2-290x+1931\) 6.2.0.a.1 $[ ]$
67335.k1 67335.k \( 3 \cdot 5 \cdot 67^{2} \) $1$ $\mathsf{trivial}$ $2.295948485$ $[0, 1, 1, -151083280, 754282037809]$ \(y^2+y=x^3+x^2-151083280x+754282037809\) 134.2.0.? $[(-7483/2, 8120597/2)]$
  displayed columns for results