Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
67081.a1 |
67081j2 |
67081.a |
67081j |
$2$ |
$5$ |
\( 7^{2} \cdot 37^{2} \) |
\( 7^{6} \cdot 37^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$3, 5$ |
3.3.0.1, 5.6.0.1 |
3Nn, 5B |
$7770$ |
$288$ |
$9$ |
$38.00375988$ |
$1$ |
|
$0$ |
$8791200$ |
$3.196571$ |
$38477541376$ |
$1.06078$ |
$6.16782$ |
$[0, -1, 1, -174567122, -887694063726]$ |
\(y^2+y=x^3-x^2-174567122x-887694063726\) |
3.3.0.a.1, 5.6.0.a.1, 6.6.0.c.1, 10.12.0.a.2, 15.36.0.a.2, $\ldots$ |
$[(-265611461692260410141/186599703, 821246889025903246092923446/186599703)]$ |
67081.a2 |
67081j1 |
67081.a |
67081j |
$2$ |
$5$ |
\( 7^{2} \cdot 37^{2} \) |
\( 7^{6} \cdot 37^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$3, 5$ |
3.3.0.1, 5.6.0.1 |
3Nn, 5B |
$7770$ |
$288$ |
$9$ |
$7.600751977$ |
$1$ |
|
$0$ |
$1758240$ |
$2.391853$ |
$4096$ |
$0.76978$ |
$4.72315$ |
$[0, -1, 1, -827332, 220507048]$ |
\(y^2+y=x^3-x^2-827332x+220507048\) |
3.3.0.a.1, 5.6.0.a.1, 6.6.0.c.1, 10.12.0.a.1, 15.36.0.a.1, $\ldots$ |
$[(-183782/19, 154817465/19)]$ |
67081.b1 |
67081c4 |
67081.b |
67081c |
$4$ |
$14$ |
\( 7^{2} \cdot 37^{2} \) |
\( 7^{9} \cdot 37^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q(\sqrt{-7})$ |
$-28$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$709632$ |
$2.325848$ |
$16581375$ |
$1.19804$ |
$5.02107$ |
$[1, -1, 1, -2494575, 1517046248]$ |
\(y^2+xy+y=x^3-x^2-2494575x+1517046248\) |
|
$[ ]$ |
67081.b2 |
67081c3 |
67081.b |
67081c |
$4$ |
$14$ |
\( 7^{2} \cdot 37^{2} \) |
\( - 7^{9} \cdot 37^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q(\sqrt{-7})$ |
$-7$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$1$ |
$354816$ |
$1.979275$ |
$-3375$ |
$0.98030$ |
$4.29348$ |
$[1, -1, 1, -146740, 26640590]$ |
\(y^2+xy+y=x^3-x^2-146740x+26640590\) |
|
$[ ]$ |
67081.b3 |
67081c2 |
67081.b |
67081c |
$4$ |
$14$ |
\( 7^{2} \cdot 37^{2} \) |
\( 7^{3} \cdot 37^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q(\sqrt{-7})$ |
$-28$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$101376$ |
$1.352894$ |
$16581375$ |
$1.19804$ |
$3.97052$ |
$[1, -1, 1, -50910, -4408330]$ |
\(y^2+xy+y=x^3-x^2-50910x-4408330\) |
|
$[ ]$ |
67081.b4 |
67081c1 |
67081.b |
67081c |
$4$ |
$14$ |
\( 7^{2} \cdot 37^{2} \) |
\( - 7^{3} \cdot 37^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q(\sqrt{-7})$ |
$-7$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$1$ |
$50688$ |
$1.006321$ |
$-3375$ |
$0.98030$ |
$3.24293$ |
$[1, -1, 1, -2995, -76814]$ |
\(y^2+xy+y=x^3-x^2-2995x-76814\) |
|
$[ ]$ |
67081.c1 |
67081d2 |
67081.c |
67081d |
$2$ |
$7$ |
\( 7^{2} \cdot 37^{2} \) |
\( - 7^{6} \cdot 37^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2, 7$ |
4.2.0.1, 7.8.0.1 |
7B |
$2072$ |
$192$ |
$6$ |
$2.780787133$ |
$1$ |
|
$4$ |
$90720$ |
$1.234652$ |
$-371323264041$ |
$1.11663$ |
$4.09745$ |
$[1, -1, 1, -81472, 8971092]$ |
\(y^2+xy+y=x^3-x^2-81472x+8971092\) |
4.2.0.a.1, 7.8.0.a.1, 28.16.0.a.1, 56.32.0.b.1, 259.48.0.?, $\ldots$ |
$[(165, -84), (1474/3, -1465/3)]$ |
67081.c2 |
67081d1 |
67081.c |
67081d |
$2$ |
$7$ |
\( 7^{2} \cdot 37^{2} \) |
\( - 7^{6} \cdot 37^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2, 7$ |
4.2.0.1, 7.8.0.1 |
7B |
$2072$ |
$192$ |
$6$ |
$2.780787133$ |
$1$ |
|
$6$ |
$12960$ |
$0.261696$ |
$999$ |
$0.76978$ |
$2.32183$ |
$[1, -1, 1, 113, 368]$ |
\(y^2+xy+y=x^3-x^2+113x+368\) |
4.2.0.a.1, 7.8.0.a.1, 28.16.0.a.1, 56.32.0.b.2, 259.48.0.?, $\ldots$ |
$[(2, 23), (47/2, 403/2)]$ |
67081.d1 |
67081e2 |
67081.d |
67081e |
$2$ |
$2$ |
\( 7^{2} \cdot 37^{2} \) |
\( 7^{12} \cdot 37^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1036$ |
$12$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$4727808$ |
$2.893696$ |
$760798453689/4353013$ |
$0.97619$ |
$5.46162$ |
$[1, -1, 1, -12757968, 17455894334]$ |
\(y^2+xy+y=x^3-x^2-12757968x+17455894334\) |
2.3.0.a.1, 28.6.0.c.1, 74.6.0.?, 1036.12.0.? |
$[ ]$ |
67081.d2 |
67081e1 |
67081.d |
67081e |
$2$ |
$2$ |
\( 7^{2} \cdot 37^{2} \) |
\( - 7^{9} \cdot 37^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1036$ |
$12$ |
$0$ |
$1$ |
$9$ |
$3$ |
$1$ |
$2363904$ |
$2.547123$ |
$-15438249/469567$ |
$0.97720$ |
$4.84756$ |
$[1, -1, 1, -347983, 578314734]$ |
\(y^2+xy+y=x^3-x^2-347983x+578314734\) |
2.3.0.a.1, 14.6.0.b.1, 148.6.0.?, 1036.12.0.? |
$[ ]$ |
67081.e1 |
67081h1 |
67081.e |
67081h |
$1$ |
$1$ |
\( 7^{2} \cdot 37^{2} \) |
\( - 7^{9} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.6.0.1 |
3Ns |
$1554$ |
$24$ |
$1$ |
$0.722412656$ |
$1$ |
|
$4$ |
$103680$ |
$1.055111$ |
$-262144/343$ |
$0.92294$ |
$3.25428$ |
$[0, 1, 1, -2417, -83415]$ |
\(y^2+y=x^3+x^2-2417x-83415\) |
3.6.0.b.1, 42.12.0.a.1, 111.12.0.?, 518.2.0.?, 1554.24.1.? |
$[(345, 6345)]$ |
67081.f1 |
67081g1 |
67081.f |
67081g |
$1$ |
$1$ |
\( 7^{2} \cdot 37^{2} \) |
\( - 7^{9} \cdot 37^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.6.0.1 |
3Ns |
$1554$ |
$24$ |
$1$ |
$11.94724437$ |
$1$ |
|
$0$ |
$3836160$ |
$2.860569$ |
$-262144/343$ |
$0.92294$ |
$5.20372$ |
$[0, 1, 1, -3309329, -4185497256]$ |
\(y^2+y=x^3+x^2-3309329x-4185497256\) |
3.6.0.b.1, 42.12.0.a.1, 111.12.0.?, 518.2.0.?, 1554.24.1.? |
$[(682998864/547, 2068802898669/547)]$ |
67081.g1 |
67081a3 |
67081.g |
67081a |
$3$ |
$9$ |
\( 7^{2} \cdot 37^{2} \) |
\( 7^{6} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$13986$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$3102624$ |
$3.000496$ |
$727057727488000/37$ |
$1.08598$ |
$6.07910$ |
$[0, -1, 1, -125665073, 542254977186]$ |
\(y^2+y=x^3-x^2-125665073x+542254977186\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 42.8.0-3.a.1.1, 74.2.0.?, $\ldots$ |
$[ ]$ |
67081.g2 |
67081a2 |
67081.g |
67081a |
$3$ |
$9$ |
\( 7^{2} \cdot 37^{2} \) |
\( 7^{6} \cdot 37^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$13986$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$1034208$ |
$2.451191$ |
$1404928000/50653$ |
$0.97274$ |
$4.89526$ |
$[0, -1, 1, -1565223, 730389729]$ |
\(y^2+y=x^3-x^2-1565223x+730389729\) |
3.12.0.a.1, 9.36.0.b.1, 42.24.0-3.a.1.1, 74.2.0.?, 126.72.0.?, $\ldots$ |
$[ ]$ |
67081.g3 |
67081a1 |
67081.g |
67081a |
$3$ |
$9$ |
\( 7^{2} \cdot 37^{2} \) |
\( 7^{6} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$13986$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$344736$ |
$1.901884$ |
$4096000/37$ |
$0.88268$ |
$4.36998$ |
$[0, -1, 1, -223603, -40303880]$ |
\(y^2+y=x^3-x^2-223603x-40303880\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 42.8.0-3.a.1.2, 74.2.0.?, $\ldots$ |
$[ ]$ |
67081.h1 |
67081b2 |
67081.h |
67081b |
$2$ |
$7$ |
\( 7^{2} \cdot 37^{2} \) |
\( - 7^{6} \cdot 37^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2, 7$ |
4.2.0.1, 7.16.0.1 |
7B.2.1 |
$2072$ |
$192$ |
$6$ |
$1$ |
$4$ |
$2$ |
$0$ |
$3356640$ |
$3.040112$ |
$-371323264041$ |
$1.11663$ |
$6.04690$ |
$[1, -1, 0, -111534740, 453408923869]$ |
\(y^2+xy=x^3-x^2-111534740x+453408923869\) |
4.2.0.a.1, 7.16.0-7.a.1.2, 28.32.0-28.a.1.2, 56.64.0-56.b.1.1, 259.48.0.?, $\ldots$ |
$[ ]$ |
67081.h2 |
67081b1 |
67081.h |
67081b |
$2$ |
$7$ |
\( 7^{2} \cdot 37^{2} \) |
\( - 7^{6} \cdot 37^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2, 7$ |
4.2.0.1, 7.16.0.2 |
7B.2.3 |
$2072$ |
$192$ |
$6$ |
$1$ |
$4$ |
$2$ |
$0$ |
$479520$ |
$2.067154$ |
$999$ |
$0.76978$ |
$4.27128$ |
$[1, -1, 0, 155125, 20049882]$ |
\(y^2+xy=x^3-x^2+155125x+20049882\) |
4.2.0.a.1, 7.16.0-7.a.1.1, 28.32.0-28.a.1.4, 56.64.0-56.b.2.1, 259.48.0.?, $\ldots$ |
$[ ]$ |
67081.i1 |
67081i2 |
67081.i |
67081i |
$2$ |
$5$ |
\( 7^{2} \cdot 37^{2} \) |
\( 7^{6} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$3, 5$ |
3.3.0.1, 5.6.0.1 |
3Nn, 5B |
$7770$ |
$288$ |
$9$ |
$14.48443622$ |
$1$ |
|
$0$ |
$237600$ |
$1.391113$ |
$38477541376$ |
$1.06078$ |
$4.21837$ |
$[0, -1, 1, -127514, -17483649]$ |
\(y^2+y=x^3-x^2-127514x-17483649\) |
3.3.0.a.1, 5.6.0.a.1, 6.6.0.c.1, 10.12.0.a.2, 15.36.0.a.2, $\ldots$ |
$[(-437542907/1458, 356183641/1458)]$ |
67081.i2 |
67081i1 |
67081.i |
67081i |
$2$ |
$5$ |
\( 7^{2} \cdot 37^{2} \) |
\( 7^{6} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$3, 5$ |
3.3.0.1, 5.6.0.1 |
3Nn, 5B |
$7770$ |
$288$ |
$9$ |
$2.896887245$ |
$1$ |
|
$0$ |
$47520$ |
$0.586393$ |
$4096$ |
$0.76978$ |
$2.77370$ |
$[0, -1, 1, -604, 4549]$ |
\(y^2+y=x^3-x^2-604x+4549\) |
3.3.0.a.1, 5.6.0.a.1, 6.6.0.c.1, 10.12.0.a.1, 15.36.0.a.1, $\ldots$ |
$[(-11/2, 625/2)]$ |
67081.j1 |
67081f1 |
67081.j |
67081f |
$1$ |
$1$ |
\( 7^{2} \cdot 37^{2} \) |
\( 7^{6} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$1034208$ |
$1.781872$ |
$110592/37$ |
$0.76978$ |
$4.04498$ |
$[0, 0, 1, -67081, -4343495]$ |
\(y^2+y=x^3-67081x-4343495\) |
74.2.0.? |
$[ ]$ |