The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000
| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 664.a1 |
664a1 |
664.a |
664a |
$1$ |
$1$ |
\( 2^{3} \cdot 83 \) |
\( - 2^{8} \cdot 83 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$0.096676050$ |
$1$ |
|
$26$ |
$160$ |
$-0.466387$ |
$-148176/83$ |
$0.66708$ |
$2.78971$ |
$[0, 0, 0, -7, 10]$ |
\(y^2=x^3-7x+10\) |
166.2.0.? |
$[(1, 2), (3, 4)]$ |
$1$ |
| 664.b1 |
664c1 |
664.b |
664c |
$1$ |
$1$ |
\( 2^{3} \cdot 83 \) |
\( - 2^{4} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$0.207011953$ |
$1$ |
|
$6$ |
$16$ |
$-0.688087$ |
$-256000/83$ |
$0.71692$ |
$2.41146$ |
$[0, -1, 0, -3, 4]$ |
\(y^2=x^3-x^2-3x+4\) |
166.2.0.? |
$[(1, 1)]$ |
$1$ |
| 664.c1 |
664b1 |
664.c |
664b |
$1$ |
$1$ |
\( 2^{3} \cdot 83 \) |
\( - 2^{4} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$0.300033953$ |
$1$ |
|
$4$ |
$16$ |
$-0.720872$ |
$2048/83$ |
$0.76681$ |
$2.25164$ |
$[0, 1, 0, 1, 2]$ |
\(y^2=x^3+x^2+x+2\) |
166.2.0.? |
$[(-1, 1)]$ |
$1$ |
Download
displayed columns for
results