| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 6370.a1 |
6370a1 |
6370.a |
6370a |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{4} \cdot 5^{2} \cdot 7^{4} \cdot 13^{3} \) |
$2$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$156$ |
$16$ |
$0$ |
$0.520529683$ |
$1$ |
|
$34$ |
$5184$ |
$0.498787$ |
$-2305248169/878800$ |
$1.00803$ |
$3.40757$ |
$[1, 0, 1, -369, 3476]$ |
\(y^2+xy+y=x^3-369x+3476\) |
3.8.0-3.a.1.2, 52.2.0.a.1, 156.16.0.? |
$[(-17, 78), (11, 22)]$ |
$1$ |
| 6370.a2 |
6370a2 |
6370.a |
6370a |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{12} \cdot 5^{6} \cdot 7^{4} \cdot 13 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$156$ |
$16$ |
$0$ |
$0.520529683$ |
$1$ |
|
$18$ |
$15552$ |
$1.048094$ |
$1029084842471/832000000$ |
$0.95861$ |
$4.04634$ |
$[1, 0, 1, 2816, -36018]$ |
\(y^2+xy+y=x^3+2816x-36018\) |
3.8.0-3.a.1.1, 52.2.0.a.1, 156.16.0.? |
$[(46, 414), (25, 211)]$ |
$1$ |
| 6370.b1 |
6370b3 |
6370.b |
6370b |
$3$ |
$9$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{63} \cdot 5^{2} \cdot 7^{9} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$9144576$ |
$4.330101$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$8.74713$ |
$[1, 1, 0, -2474656678, 50249707696532]$ |
\(y^2+xy=x^3+x^2-2474656678x+50249707696532\) |
3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.2, 63.24.0-9.a.1.2, 117.36.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 6370.b2 |
6370b1 |
6370.b |
6370b |
$3$ |
$9$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 5^{18} \cdot 7^{9} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$1016064$ |
$3.231491$ |
$-21405018343206000779641/2177246093750000000$ |
$1.01453$ |
$7.22146$ |
$[1, 1, 0, -28343928, -62991234368]$ |
\(y^2+xy=x^3+x^2-28343928x-62991234368\) |
3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.1, 63.24.0-9.a.1.1, 117.36.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 6370.b3 |
6370b2 |
6370.b |
6370b |
$3$ |
$9$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{21} \cdot 5^{6} \cdot 7^{15} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$6552$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$3048192$ |
$3.780796$ |
$4998853083179567995470359/2905108466204672000000$ |
$1.08184$ |
$7.82554$ |
$[1, 1, 0, 174546697, 57840468757]$ |
\(y^2+xy=x^3+x^2+174546697x+57840468757\) |
3.12.0.a.1, 21.24.0-3.a.1.1, 117.36.0.?, 312.24.0.?, 728.2.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 6370.c1 |
6370g2 |
6370.c |
6370g |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{3} \cdot 5^{6} \cdot 7^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$0.194372334$ |
$1$ |
|
$6$ |
$20736$ |
$1.331816$ |
$-22164361129/557375000$ |
$1.07496$ |
$4.48568$ |
$[1, 1, 0, -2867, 392869]$ |
\(y^2+xy=x^3+x^2-2867x+392869\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 312.8.0.?, 728.2.0.?, 2184.16.0.? |
$[(83, 816)]$ |
$1$ |
| 6370.c2 |
6370g1 |
6370.c |
6370g |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2 \cdot 5^{2} \cdot 7^{7} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$0.583117002$ |
$1$ |
|
$4$ |
$6912$ |
$0.782511$ |
$30080231/768950$ |
$0.87009$ |
$3.72859$ |
$[1, 1, 0, 318, -14174]$ |
\(y^2+xy=x^3+x^2+318x-14174\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 312.8.0.?, 728.2.0.?, 2184.16.0.? |
$[(27, 109)]$ |
$1$ |
| 6370.d1 |
6370e1 |
6370.d |
6370e |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{2} \cdot 5^{3} \cdot 7^{8} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3640$ |
$12$ |
$0$ |
$1.156562637$ |
$1$ |
|
$7$ |
$4608$ |
$0.760779$ |
$2749884201/318500$ |
$0.95435$ |
$3.81424$ |
$[1, -1, 0, -1430, 18976]$ |
\(y^2+xy=x^3-x^2-1430x+18976\) |
2.3.0.a.1, 56.6.0.c.1, 130.6.0.?, 3640.12.0.? |
$[(30, 34)]$ |
$1$ |
| 6370.d2 |
6370e2 |
6370.d |
6370e |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2 \cdot 5^{6} \cdot 7^{7} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3640$ |
$12$ |
$0$ |
$2.313125274$ |
$1$ |
|
$4$ |
$9216$ |
$1.107353$ |
$7518017079/36968750$ |
$1.01440$ |
$4.15905$ |
$[1, -1, 0, 2000, 93750]$ |
\(y^2+xy=x^3-x^2+2000x+93750\) |
2.3.0.a.1, 56.6.0.b.1, 260.6.0.?, 3640.12.0.? |
$[(-19, 230)]$ |
$1$ |
| 6370.e1 |
6370d2 |
6370.e |
6370d |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2 \cdot 5^{2} \cdot 7^{3} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3640$ |
$12$ |
$0$ |
$0.765022911$ |
$1$ |
|
$6$ |
$1280$ |
$-0.021968$ |
$89314623/8450$ |
$0.98028$ |
$2.75653$ |
$[1, -1, 0, -65, -169]$ |
\(y^2+xy=x^3-x^2-65x-169\) |
2.3.0.a.1, 56.6.0.a.1, 520.6.0.?, 1820.6.0.?, 3640.12.0.? |
$[(-5, 6)]$ |
$1$ |
| 6370.e2 |
6370d1 |
6370.e |
6370d |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{2} \cdot 5 \cdot 7^{3} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3640$ |
$12$ |
$0$ |
$1.530045822$ |
$1$ |
|
$5$ |
$640$ |
$-0.368542$ |
$35937/260$ |
$0.94274$ |
$2.14282$ |
$[1, -1, 0, 5, -15]$ |
\(y^2+xy=x^3-x^2+5x-15\) |
2.3.0.a.1, 56.6.0.d.1, 520.6.0.?, 910.6.0.?, 3640.12.0.? |
$[(3, 3)]$ |
$1$ |
| 6370.f1 |
6370f2 |
6370.f |
6370f |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2 \cdot 5^{2} \cdot 7^{9} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3640$ |
$12$ |
$0$ |
$1.631984749$ |
$1$ |
|
$6$ |
$8960$ |
$0.950987$ |
$89314623/8450$ |
$0.98028$ |
$4.08944$ |
$[1, -1, 0, -3194, 64350]$ |
\(y^2+xy=x^3-x^2-3194x+64350\) |
2.3.0.a.1, 56.6.0.a.1, 520.6.0.?, 1820.6.0.?, 3640.12.0.? |
$[(41, 12)]$ |
$1$ |
| 6370.f2 |
6370f1 |
6370.f |
6370f |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{2} \cdot 5 \cdot 7^{9} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3640$ |
$12$ |
$0$ |
$3.263969499$ |
$1$ |
|
$5$ |
$4480$ |
$0.604413$ |
$35937/260$ |
$0.94274$ |
$3.47574$ |
$[1, -1, 0, 236, 4668]$ |
\(y^2+xy=x^3-x^2+236x+4668\) |
2.3.0.a.1, 56.6.0.d.1, 520.6.0.?, 910.6.0.?, 3640.12.0.? |
$[(-11, 31)]$ |
$1$ |
| 6370.g1 |
6370j3 |
6370.g |
6370j |
$4$ |
$4$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{5} \cdot 5^{12} \cdot 7^{8} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3640$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$184320$ |
$2.499920$ |
$143378317900125424089/4976562500000$ |
$1.02185$ |
$6.63148$ |
$[1, -1, 0, -5342969, 4754787533]$ |
\(y^2+xy=x^3-x^2-5342969x+4754787533\) |
2.3.0.a.1, 4.6.0.c.1, 40.12.0.y.1, 56.12.0-4.c.1.2, 104.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 6370.g2 |
6370j2 |
6370.g |
6370j |
$4$ |
$4$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{10} \cdot 5^{6} \cdot 7^{10} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$3640$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$92160$ |
$2.153347$ |
$39920686684059609/6492304000000$ |
$1.02407$ |
$5.69690$ |
$[1, -1, 0, -348889, 67344045]$ |
\(y^2+xy=x^3-x^2-348889x+67344045\) |
2.6.0.a.1, 40.12.0.b.1, 56.12.0-2.a.1.1, 104.12.0.?, 140.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 6370.g3 |
6370j1 |
6370.g |
6370j |
$4$ |
$4$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{20} \cdot 5^{3} \cdot 7^{8} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3640$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$46080$ |
$1.806772$ |
$884984855328729/83492864000$ |
$0.96922$ |
$5.26204$ |
$[1, -1, 0, -98009, -10779987]$ |
\(y^2+xy=x^3-x^2-98009x-10779987\) |
2.3.0.a.1, 4.6.0.c.1, 40.12.0.y.1, 56.12.0-4.c.1.4, 104.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 6370.g4 |
6370j4 |
6370.g |
6370j |
$4$ |
$4$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{5} \cdot 5^{3} \cdot 7^{14} \cdot 13^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3640$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$184320$ |
$2.499920$ |
$236293804275620391/658593925444000$ |
$1.05092$ |
$6.05280$ |
$[1, -1, 0, 631111, 376828045]$ |
\(y^2+xy=x^3-x^2+631111x+376828045\) |
2.3.0.a.1, 4.6.0.c.1, 40.12.0.s.1, 56.12.0-4.c.1.1, 104.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 6370.h1 |
6370c3 |
6370.h |
6370c |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{12} \cdot 5 \cdot 7^{6} \cdot 13^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.3, 3.4.0.1 |
2B, 3B |
$10920$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$1$ |
$20736$ |
$1.203405$ |
$988345570681/44994560$ |
$0.95432$ |
$4.48603$ |
$[1, 1, 0, -10168, 374592]$ |
\(y^2+xy=x^3+x^2-10168x+374592\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ |
$[ ]$ |
$1$ |
| 6370.h2 |
6370c1 |
6370.h |
6370c |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{4} \cdot 5^{3} \cdot 7^{6} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.3, 3.4.0.1 |
2B, 3B |
$10920$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$1$ |
$6912$ |
$0.654099$ |
$3803721481/26000$ |
$0.90619$ |
$3.85128$ |
$[1, 1, 0, -1593, -25003]$ |
\(y^2+xy=x^3+x^2-1593x-25003\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ |
$[ ]$ |
$1$ |
| 6370.h3 |
6370c2 |
6370.h |
6370c |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{2} \cdot 5^{6} \cdot 7^{6} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.5, 3.4.0.1 |
2B, 3B |
$10920$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$13824$ |
$1.000671$ |
$-217081801/10562500$ |
$0.97746$ |
$4.03167$ |
$[1, 1, 0, -613, -54207]$ |
\(y^2+xy=x^3+x^2-613x-54207\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.48.0.b.1, $\ldots$ |
$[ ]$ |
$1$ |
| 6370.h4 |
6370c4 |
6370.h |
6370c |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{6} \cdot 5^{2} \cdot 7^{6} \cdot 13^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.5, 3.4.0.1 |
2B, 3B |
$10920$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$41472$ |
$1.549978$ |
$157376536199/7722894400$ |
$1.01877$ |
$4.78183$ |
$[1, 1, 0, 5512, 1443968]$ |
\(y^2+xy=x^3+x^2+5512x+1443968\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.48.0.b.2, $\ldots$ |
$[ ]$ |
$1$ |
| 6370.i1 |
6370i1 |
6370.i |
6370i |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{4} \cdot 5^{2} \cdot 7^{10} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1092$ |
$16$ |
$0$ |
$5.375752057$ |
$1$ |
|
$2$ |
$36288$ |
$1.471743$ |
$-2305248169/878800$ |
$1.00803$ |
$4.74049$ |
$[1, 1, 0, -18057, -1210411]$ |
\(y^2+xy=x^3+x^2-18057x-1210411\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 52.2.0.a.1, 156.8.0.?, 1092.16.0.? |
$[(350, 5783)]$ |
$1$ |
| 6370.i2 |
6370i2 |
6370.i |
6370i |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{12} \cdot 5^{6} \cdot 7^{10} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1092$ |
$16$ |
$0$ |
$1.791917352$ |
$1$ |
|
$2$ |
$108864$ |
$2.021049$ |
$1029084842471/832000000$ |
$0.95861$ |
$5.37925$ |
$[1, 1, 0, 138008, 12492096]$ |
\(y^2+xy=x^3+x^2+138008x+12492096\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 52.2.0.a.1, 156.8.0.?, 1092.16.0.? |
$[(-48, 2424)]$ |
$1$ |
| 6370.j1 |
6370h4 |
6370.j |
6370h |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{3} \cdot 5^{6} \cdot 7^{9} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$10920$ |
$96$ |
$1$ |
$0.789900001$ |
$1$ |
|
$4$ |
$82944$ |
$1.983673$ |
$349046010201856969/7245875000$ |
$0.97162$ |
$5.94444$ |
$[1, 1, 0, -718757, 234238901]$ |
\(y^2+xy=x^3+x^2-718757x+234238901\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 21.8.0-3.a.1.2, 24.24.0-6.a.1.4, $\ldots$ |
$[(97, 12814)]$ |
$1$ |
| 6370.j2 |
6370h3 |
6370.j |
6370h |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{6} \cdot 5^{3} \cdot 7^{12} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$10920$ |
$96$ |
$1$ |
$1.579800003$ |
$1$ |
|
$3$ |
$41472$ |
$1.637100$ |
$94376601570889/12235496000$ |
$0.93000$ |
$5.00651$ |
$[1, 1, 0, -46477, 3377949]$ |
\(y^2+xy=x^3+x^2-46477x+3377949\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 21.8.0-3.a.1.2, 24.24.0-6.a.1.15, $\ldots$ |
$[(258, 2811)]$ |
$1$ |
| 6370.j3 |
6370h2 |
6370.j |
6370h |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2 \cdot 5^{2} \cdot 7^{7} \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$10920$ |
$96$ |
$1$ |
$2.369700005$ |
$1$ |
|
$2$ |
$27648$ |
$1.434366$ |
$3092354182009/1689383150$ |
$0.94489$ |
$4.61625$ |
$[1, 1, 0, -14872, -171366]$ |
\(y^2+xy=x^3+x^2-14872x-171366\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 21.8.0-3.a.1.1, 24.24.0-6.a.1.12, $\ldots$ |
$[(-15, 228)]$ |
$1$ |
| 6370.j4 |
6370h1 |
6370.j |
6370h |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{2} \cdot 5 \cdot 7^{8} \cdot 13^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$10920$ |
$96$ |
$1$ |
$4.739400011$ |
$1$ |
|
$3$ |
$13824$ |
$1.087793$ |
$1408317602329/2153060$ |
$0.89595$ |
$4.52646$ |
$[1, 1, 0, -11442, -475264]$ |
\(y^2+xy=x^3+x^2-11442x-475264\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 21.8.0-3.a.1.1, 24.24.0-6.a.1.7, $\ldots$ |
$[(1070, 34304)]$ |
$1$ |
| 6370.k1 |
6370k1 |
6370.k |
6370k |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{24} \cdot 5^{2} \cdot 7^{8} \cdot 13^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$156$ |
$16$ |
$0$ |
$0.361827814$ |
$1$ |
|
$16$ |
$266112$ |
$2.617451$ |
$-7626453723007966609/921488588800$ |
$0.99961$ |
$6.74087$ |
$[1, 0, 0, -7352941, 7674505425]$ |
\(y^2+xy=x^3-7352941x+7674505425\) |
3.8.0-3.a.1.2, 52.2.0.a.1, 156.16.0.? |
$[(1538, 1311)]$ |
$1$ |
| 6370.k2 |
6370k2 |
6370.k |
6370k |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{8} \cdot 5^{6} \cdot 7^{8} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$156$ |
$16$ |
$0$ |
$0.120609271$ |
$1$ |
|
$6$ |
$798336$ |
$3.166756$ |
$18547687612920431/42417997492000000$ |
$1.07323$ |
$6.99916$ |
$[1, 0, 0, 988819, 23788766161]$ |
\(y^2+xy=x^3+988819x+23788766161\) |
3.8.0-3.a.1.1, 52.2.0.a.1, 156.16.0.? |
$[(886, 158807)]$ |
$1$ |
| 6370.l1 |
6370bb1 |
6370.l |
6370bb |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{8} \cdot 5^{5} \cdot 7^{6} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$3640$ |
$48$ |
$0$ |
$0.132362345$ |
$1$ |
|
$15$ |
$23040$ |
$1.329906$ |
$65787589563409/10400000$ |
$0.97958$ |
$4.96531$ |
$[1, 0, 0, -41210, 3216100]$ |
\(y^2+xy=x^3-41210x+3216100\) |
2.3.0.a.1, 4.6.0.b.1, 56.12.0-4.b.1.2, 130.6.0.?, 260.24.0.?, $\ldots$ |
$[(60, 950)]$ |
$1$ |
| 6370.l2 |
6370bb2 |
6370.l |
6370bb |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{4} \cdot 5^{10} \cdot 7^{6} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$3640$ |
$48$ |
$0$ |
$0.264724691$ |
$1$ |
|
$12$ |
$46080$ |
$1.676479$ |
$-48743122863889/26406250000$ |
$0.98824$ |
$5.00650$ |
$[1, 0, 0, -37290, 3853492]$ |
\(y^2+xy=x^3-37290x+3853492\) |
2.3.0.a.1, 4.6.0.a.1, 56.12.0-4.a.1.1, 260.12.0.?, 520.24.0.?, $\ldots$ |
$[(74, 1188)]$ |
$1$ |
| 6370.m1 |
6370x2 |
6370.m |
6370x |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2 \cdot 5^{2} \cdot 7^{7} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3640$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6144$ |
$0.798803$ |
$48587168449/59150$ |
$0.86593$ |
$4.14210$ |
$[1, 0, 0, -3725, -87725]$ |
\(y^2+xy=x^3-3725x-87725\) |
2.3.0.a.1, 56.6.0.a.1, 260.6.0.?, 3640.12.0.? |
$[ ]$ |
$1$ |
| 6370.m2 |
6370x1 |
6370.m |
6370x |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{2} \cdot 5 \cdot 7^{8} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3640$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3072$ |
$0.452230$ |
$24137569/12740$ |
$0.94286$ |
$3.27361$ |
$[1, 0, 0, -295, -603]$ |
\(y^2+xy=x^3-295x-603\) |
2.3.0.a.1, 56.6.0.d.1, 130.6.0.?, 3640.12.0.? |
$[ ]$ |
$1$ |
| 6370.n1 |
6370p1 |
6370.n |
6370p |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{4} \cdot 5 \cdot 7^{10} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$17472$ |
$1.227997$ |
$-1182740881/13520$ |
$0.98632$ |
$4.60876$ |
$[1, 1, 1, -14456, -681591]$ |
\(y^2+xy+y=x^3+x^2-14456x-681591\) |
20.2.0.a.1 |
$[ ]$ |
$1$ |
| 6370.o1 |
6370n2 |
6370.o |
6370n |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{8} \cdot 5 \cdot 7^{2} \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$420$ |
$16$ |
$0$ |
$0.431039570$ |
$1$ |
|
$4$ |
$38016$ |
$1.811613$ |
$-1033202467754104941601/6178315520$ |
$1.01683$ |
$5.96834$ |
$[1, 1, 1, -770701, 260100483]$ |
\(y^2+xy+y=x^3+x^2-770701x+260100483\) |
3.4.0.a.1, 20.2.0.a.1, 21.8.0-3.a.1.2, 60.8.0.a.1, 420.16.0.? |
$[(449, 1972)]$ |
$1$ |
| 6370.o2 |
6370n1 |
6370.o |
6370n |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{24} \cdot 5^{3} \cdot 7^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$420$ |
$16$ |
$0$ |
$0.143679856$ |
$1$ |
|
$8$ |
$12672$ |
$1.262306$ |
$-1701366814932001/354418688000$ |
$0.96549$ |
$4.48315$ |
$[1, 1, 1, -9101, 385923]$ |
\(y^2+xy+y=x^3+x^2-9101x+385923\) |
3.4.0.a.1, 20.2.0.a.1, 21.8.0-3.a.1.1, 60.8.0.a.1, 420.16.0.? |
$[(-41, 852)]$ |
$1$ |
| 6370.p1 |
6370o1 |
6370.p |
6370o |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2 \cdot 5^{8} \cdot 7^{9} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$46592$ |
$1.771170$ |
$-27279055902727/10156250$ |
$0.94552$ |
$5.53134$ |
$[1, 1, 1, -215111, 38323683]$ |
\(y^2+xy+y=x^3+x^2-215111x+38323683\) |
728.2.0.? |
$[ ]$ |
$1$ |
| 6370.q1 |
6370ba1 |
6370.q |
6370ba |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{11} \cdot 5^{4} \cdot 7^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$0.022943576$ |
$1$ |
|
$18$ |
$8448$ |
$1.033060$ |
$-21818208730807/2812160000$ |
$0.94731$ |
$4.19581$ |
$[1, 1, 1, -4075, 109017]$ |
\(y^2+xy+y=x^3+x^2-4075x+109017\) |
728.2.0.? |
$[(-43, 476)]$ |
$1$ |
| 6370.r1 |
6370l3 |
6370.r |
6370l |
$4$ |
$4$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{2} \cdot 5 \cdot 7^{6} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.15 |
2B |
$7280$ |
$192$ |
$3$ |
$2.077762263$ |
$1$ |
|
$2$ |
$12288$ |
$1.168741$ |
$294889639316481/260$ |
$1.02336$ |
$5.13658$ |
$[1, -1, 1, -67948, 6834251]$ |
\(y^2+xy+y=x^3-x^2-67948x+6834251\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.o.1, 16.24.0.i.1, 28.12.0-4.c.1.1, $\ldots$ |
$[(153, -29)]$ |
$1$ |
| 6370.r2 |
6370l2 |
6370.r |
6370l |
$4$ |
$4$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{4} \cdot 5^{2} \cdot 7^{6} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.35 |
2Cs |
$3640$ |
$192$ |
$3$ |
$1.038881131$ |
$1$ |
|
$10$ |
$6144$ |
$0.822168$ |
$72043225281/67600$ |
$1.01871$ |
$4.18707$ |
$[1, -1, 1, -4248, 107531]$ |
\(y^2+xy+y=x^3-x^2-4248x+107531\) |
2.6.0.a.1, 4.12.0.a.1, 8.24.0.g.1, 28.24.0-4.a.1.1, 56.48.0-8.g.1.1, $\ldots$ |
$[(23, 135)]$ |
$1$ |
| 6370.r3 |
6370l4 |
6370.r |
6370l |
$4$ |
$4$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{2} \cdot 5^{4} \cdot 7^{6} \cdot 13^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.24.0.2 |
2B |
$7280$ |
$192$ |
$3$ |
$2.077762263$ |
$1$ |
|
$2$ |
$12288$ |
$1.168741$ |
$-32798729601/71402500$ |
$1.04885$ |
$4.27540$ |
$[1, -1, 1, -3268, 157707]$ |
\(y^2+xy+y=x^3-x^2-3268x+157707\) |
2.3.0.a.1, 4.24.0.c.1, 28.48.0-4.c.1.1, 520.48.1.?, 1040.96.3.?, $\ldots$ |
$[(37, 275)]$ |
$1$ |
| 6370.r4 |
6370l1 |
6370.r |
6370l |
$4$ |
$4$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{8} \cdot 5 \cdot 7^{6} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.15 |
2B |
$7280$ |
$192$ |
$3$ |
$0.519440565$ |
$1$ |
|
$7$ |
$3072$ |
$0.475595$ |
$33076161/16640$ |
$0.93564$ |
$3.30958$ |
$[1, -1, 1, -328, 907]$ |
\(y^2+xy+y=x^3-x^2-328x+907\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.o.1, 16.24.0.i.1, 28.12.0-4.c.1.2, $\ldots$ |
$[(-5, 51)]$ |
$1$ |
| 6370.s1 |
6370t1 |
6370.s |
6370t |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{22} \cdot 5 \cdot 7^{8} \cdot 13^{5} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3640$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$253440$ |
$2.511009$ |
$4307585705106105969/381542350192640$ |
$1.01074$ |
$6.23132$ |
$[1, -1, 1, -1660987, -757855829]$ |
\(y^2+xy+y=x^3-x^2-1660987x-757855829\) |
2.3.0.a.1, 56.6.0.c.1, 130.6.0.?, 3640.12.0.? |
$[ ]$ |
$1$ |
| 6370.s2 |
6370t2 |
6370.s |
6370t |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{11} \cdot 5^{2} \cdot 7^{7} \cdot 13^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3640$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$506880$ |
$2.857582$ |
$5964709808210123151/49408483478681600$ |
$1.10238$ |
$6.56403$ |
$[1, -1, 1, 1851333, -3538208341]$ |
\(y^2+xy+y=x^3-x^2+1851333x-3538208341\) |
2.3.0.a.1, 56.6.0.b.1, 260.6.0.?, 3640.12.0.? |
$[ ]$ |
$1$ |
| 6370.t1 |
6370m1 |
6370.t |
6370m |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{11} \cdot 5^{4} \cdot 7^{9} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$1.295568449$ |
$1$ |
|
$4$ |
$59136$ |
$2.006016$ |
$-21818208730807/2812160000$ |
$0.94731$ |
$5.52872$ |
$[1, 0, 0, -199676, -37991920]$ |
\(y^2+xy=x^3-199676x-37991920\) |
728.2.0.? |
$[(788, 16756)]$ |
$1$ |
| 6370.u1 |
6370z1 |
6370.u |
6370z |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{17} \cdot 5^{2} \cdot 7^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$0.251166809$ |
$1$ |
|
$6$ |
$39168$ |
$1.604517$ |
$-832972004929/14611251200$ |
$1.10595$ |
$4.85968$ |
$[1, 0, 0, -9605, -2028223]$ |
\(y^2+xy=x^3-9605x-2028223\) |
728.2.0.? |
$[(914, 26983)]$ |
$1$ |
| 6370.v1 |
6370r1 |
6370.v |
6370r |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{4} \cdot 5 \cdot 7^{4} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$0.413314181$ |
$1$ |
|
$4$ |
$2496$ |
$0.255041$ |
$-1182740881/13520$ |
$0.98632$ |
$3.27585$ |
$[1, 0, 0, -295, 1945]$ |
\(y^2+xy=x^3-295x+1945\) |
20.2.0.a.1 |
$[(12, 7)]$ |
$1$ |
| 6370.w1 |
6370s2 |
6370.w |
6370s |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{8} \cdot 5 \cdot 7^{8} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$60$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$266112$ |
$2.784569$ |
$-1033202467754104941601/6178315520$ |
$1.01683$ |
$7.30125$ |
$[1, 0, 0, -37764350, -89327758780]$ |
\(y^2+xy=x^3-37764350x-89327758780\) |
3.8.0-3.a.1.1, 20.2.0.a.1, 60.16.0-60.a.1.5 |
$[ ]$ |
$1$ |
| 6370.w2 |
6370s1 |
6370.w |
6370s |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{24} \cdot 5^{3} \cdot 7^{8} \cdot 13^{2} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$60$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$88704$ |
$2.235260$ |
$-1701366814932001/354418688000$ |
$0.96549$ |
$5.81606$ |
$[1, 0, 0, -445950, -133709500]$ |
\(y^2+xy=x^3-445950x-133709500\) |
3.8.0-3.a.1.2, 20.2.0.a.1, 60.16.0-60.a.1.8 |
$[ ]$ |
$1$ |
| 6370.x1 |
6370u1 |
6370.x |
6370u |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2 \cdot 5^{8} \cdot 7^{3} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6656$ |
$0.798214$ |
$-27279055902727/10156250$ |
$0.94552$ |
$4.19843$ |
$[1, 0, 0, -4390, -112358]$ |
\(y^2+xy=x^3-4390x-112358\) |
728.2.0.? |
$[ ]$ |
$1$ |