Learn more

Refine search


Results (15 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
6171.a1 6171.a \( 3 \cdot 11^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.267650579$ $[0, 1, 1, -4572, -158416]$ \(y^2+y=x^3+x^2-4572x-158416\) 6.2.0.a.1 $[(342, 6196)]$
6171.b1 6171.b \( 3 \cdot 11^{2} \cdot 17 \) $1$ $\Z/2\Z$ $0.781451798$ $[1, 0, 0, -1053, -13122]$ \(y^2+xy=x^3-1053x-13122\) 2.3.0.a.1, 132.6.0.?, 204.6.0.?, 748.6.0.?, 2244.12.0.? $[(-18, 0)]$
6171.b2 6171.b \( 3 \cdot 11^{2} \cdot 17 \) $1$ $\Z/2\Z$ $0.390725899$ $[1, 0, 0, -118, 155]$ \(y^2+xy=x^3-118x+155\) 2.3.0.a.1, 66.6.0.a.1, 204.6.0.?, 748.6.0.?, 2244.12.0.? $[(-7, 29)]$
6171.c1 6171.c \( 3 \cdot 11^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.536083600$ $[0, -1, 1, -451249, 116824311]$ \(y^2+y=x^3-x^2-451249x+116824311\) 374.2.0.? $[(763, 14701)]$
6171.d1 6171.d \( 3 \cdot 11^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -32589, -2297509]$ \(y^2+y=x^3+x^2-32589x-2297509\) 374.2.0.? $[ ]$
6171.e1 6171.e \( 3 \cdot 11^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -7179, 231875]$ \(y^2+y=x^3+x^2-7179x+231875\) 3.4.0.a.1, 33.8.0-3.a.1.1, 102.8.0.?, 1122.16.0.? $[ ]$
6171.e2 6171.e \( 3 \cdot 11^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 81, 1370]$ \(y^2+y=x^3+x^2+81x+1370\) 3.4.0.a.1, 33.8.0-3.a.1.2, 102.8.0.?, 1122.16.0.? $[ ]$
6171.f1 6171.f \( 3 \cdot 11^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -127416, 17337967]$ \(y^2+xy+y=x^3-127416x+17337967\) 2.3.0.a.1, 132.6.0.?, 204.6.0.?, 748.6.0.?, 2244.12.0.? $[ ]$
6171.f2 6171.f \( 3 \cdot 11^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -14281, -220585]$ \(y^2+xy+y=x^3-14281x-220585\) 2.3.0.a.1, 66.6.0.a.1, 204.6.0.?, 748.6.0.?, 2244.12.0.? $[ ]$
6171.g1 6171.g \( 3 \cdot 11^{2} \cdot 17 \) $1$ $\Z/2\Z$ $4.069722192$ $[1, 0, 1, -22025, 1251743]$ \(y^2+xy+y=x^3-22025x+1251743\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 44.12.0-4.c.1.1, 66.6.0.a.1, $\ldots$ $[(2021/5, -759/5)]$
6171.g2 6171.g \( 3 \cdot 11^{2} \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $8.139444385$ $[1, 0, 1, -2060, -2059]$ \(y^2+xy+y=x^3-2060x-2059\) 2.6.0.a.1, 12.12.0-2.a.1.1, 44.12.0-2.a.1.1, 68.12.0.a.1, 132.24.0.?, $\ldots$ $[(63945/8, 15899279/8)]$
6171.g3 6171.g \( 3 \cdot 11^{2} \cdot 17 \) $1$ $\Z/2\Z$ $16.27888877$ $[1, 0, 1, -1455, -21419]$ \(y^2+xy+y=x^3-1455x-21419\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 88.12.0.?, 136.12.0.?, $\ldots$ $[(-24164831/1035, 4927471777/1035)]$
6171.g4 6171.g \( 3 \cdot 11^{2} \cdot 17 \) $1$ $\Z/2\Z$ $4.069722192$ $[1, 0, 1, 8225, -14401]$ \(y^2+xy+y=x^3+8225x-14401\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 44.12.0-4.c.1.2, 68.12.0.h.1, $\ldots$ $[(61/4, 8195/4)]$
6171.h1 6171.h \( 3 \cdot 11^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -1008, -14965]$ \(y^2+y=x^3+x^2-1008x-14965\) 374.2.0.? $[ ]$
6171.i1 6171.i \( 3 \cdot 11^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -553252, 208638403]$ \(y^2+y=x^3+x^2-553252x+208638403\) 6.2.0.a.1 $[ ]$
  displayed columns for results