| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 60016.a1 |
60016h1 |
60016.a |
60016h |
$1$ |
$1$ |
\( 2^{4} \cdot 11^{2} \cdot 31 \) |
\( - 2^{4} \cdot 11^{8} \cdot 31^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$62$ |
$2$ |
$0$ |
$8.186215008$ |
$1$ |
|
$0$ |
$1728000$ |
$2.468227$ |
$-811813221498166528/3464127271$ |
$0.97421$ |
$5.30777$ |
$[0, 1, 0, -5925652, -5554032849]$ |
\(y^2=x^3+x^2-5925652x-5554032849\) |
62.2.0.a.1 |
$[(152357/7, 26770577/7)]$ |
| 60016.b1 |
60016g1 |
60016.b |
60016g |
$1$ |
$1$ |
\( 2^{4} \cdot 11^{2} \cdot 31 \) |
\( - 2^{11} \cdot 11^{7} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2728$ |
$2$ |
$0$ |
$0.254438954$ |
$1$ |
|
$6$ |
$69120$ |
$1.002371$ |
$-31250/341$ |
$0.81290$ |
$3.21297$ |
$[0, 1, 0, -1008, 54580]$ |
\(y^2=x^3+x^2-1008x+54580\) |
2728.2.0.? |
$[(62, 484)]$ |
| 60016.c1 |
60016b1 |
60016.c |
60016b |
$1$ |
$1$ |
\( 2^{4} \cdot 11^{2} \cdot 31 \) |
\( - 2^{4} \cdot 11^{8} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$62$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$253440$ |
$1.401670$ |
$-11647819008/3604711$ |
$0.85774$ |
$3.70527$ |
$[0, 0, 0, -14399, 823889]$ |
\(y^2=x^3-14399x+823889\) |
62.2.0.a.1 |
$[ ]$ |
| 60016.d1 |
60016a1 |
60016.d |
60016a |
$1$ |
$1$ |
\( 2^{4} \cdot 11^{2} \cdot 31 \) |
\( - 2^{4} \cdot 11^{6} \cdot 31 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$62$ |
$2$ |
$0$ |
$4.773806404$ |
$1$ |
|
$4$ |
$22400$ |
$0.398610$ |
$6912/31$ |
$0.65713$ |
$2.53677$ |
$[0, 0, 0, 121, -1331]$ |
\(y^2=x^3+121x-1331\) |
62.2.0.a.1 |
$[(33/2, 121/2), (220, 3267)]$ |
| 60016.e1 |
60016o1 |
60016.e |
60016o |
$1$ |
$1$ |
\( 2^{4} \cdot 11^{2} \cdot 31 \) |
\( - 2^{31} \cdot 11^{9} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2728$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1313280$ |
$2.557793$ |
$5130275528223/21632647168$ |
$1.01888$ |
$4.89074$ |
$[0, 0, 0, 695629, -559906446]$ |
\(y^2=x^3+695629x-559906446\) |
2728.2.0.? |
$[ ]$ |
| 60016.f1 |
60016n4 |
60016.f |
60016n |
$4$ |
$4$ |
\( 2^{4} \cdot 11^{2} \cdot 31 \) |
\( 2^{13} \cdot 11^{6} \cdot 31 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$2728$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$276480$ |
$1.784018$ |
$3999236143617/62$ |
$1.07559$ |
$4.70101$ |
$[0, 0, 0, -640211, 197166354]$ |
\(y^2=x^3-640211x+197166354\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 88.24.0.?, 248.24.0.?, $\ldots$ |
$[ ]$ |
| 60016.f2 |
60016n3 |
60016.f |
60016n |
$4$ |
$4$ |
\( 2^{4} \cdot 11^{2} \cdot 31 \) |
\( 2^{13} \cdot 11^{6} \cdot 31^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.15 |
2B |
$2728$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$276480$ |
$1.784018$ |
$3196010817/1847042$ |
$1.17908$ |
$4.05279$ |
$[0, 0, 0, -59411, -204974]$ |
\(y^2=x^3-59411x-204974\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 44.12.0-4.c.1.2, 88.24.0.?, $\ldots$ |
$[ ]$ |
| 60016.f3 |
60016n2 |
60016.f |
60016n |
$4$ |
$4$ |
\( 2^{4} \cdot 11^{2} \cdot 31 \) |
\( 2^{14} \cdot 11^{6} \cdot 31^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.3 |
2Cs |
$2728$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$138240$ |
$1.437443$ |
$979146657/3844$ |
$1.02504$ |
$3.94527$ |
$[0, 0, 0, -40051, 3074610]$ |
\(y^2=x^3-40051x+3074610\) |
2.6.0.a.1, 8.12.0.a.1, 44.12.0-2.a.1.1, 88.24.0.?, 124.12.0.?, $\ldots$ |
$[ ]$ |
| 60016.f4 |
60016n1 |
60016.f |
60016n |
$4$ |
$4$ |
\( 2^{4} \cdot 11^{2} \cdot 31 \) |
\( - 2^{16} \cdot 11^{6} \cdot 31 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$2728$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$69120$ |
$1.090870$ |
$-35937/496$ |
$0.93090$ |
$3.30906$ |
$[0, 0, 0, -1331, 93170]$ |
\(y^2=x^3-1331x+93170\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 44.12.0-4.c.1.1, 62.6.0.b.1, $\ldots$ |
$[ ]$ |
| 60016.g1 |
60016m1 |
60016.g |
60016m |
$1$ |
$1$ |
\( 2^{4} \cdot 11^{2} \cdot 31 \) |
\( - 2^{4} \cdot 11^{12} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$62$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$172800$ |
$1.716665$ |
$-3499279992576/54918391$ |
$0.91752$ |
$4.18731$ |
$[0, 0, 0, -96437, 11682187]$ |
\(y^2=x^3-96437x+11682187\) |
62.2.0.a.1 |
$[ ]$ |
| 60016.h1 |
60016l1 |
60016.h |
60016l |
$1$ |
$1$ |
\( 2^{4} \cdot 11^{2} \cdot 31 \) |
\( - 2^{4} \cdot 11^{6} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$62$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$25920$ |
$0.639958$ |
$-33958656/31$ |
$1.22690$ |
$3.13589$ |
$[0, 0, 0, -2057, -35937]$ |
\(y^2=x^3-2057x-35937\) |
62.2.0.a.1 |
$[ ]$ |
| 60016.i1 |
60016f1 |
60016.i |
60016f |
$1$ |
$1$ |
\( 2^{4} \cdot 11^{2} \cdot 31 \) |
\( - 2^{4} \cdot 11^{16} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$62$ |
$2$ |
$0$ |
$13.98239582$ |
$1$ |
|
$0$ |
$2188800$ |
$2.403004$ |
$1167425747785472/804060162631$ |
$0.96638$ |
$4.71294$ |
$[0, -1, 0, 668848, 91587311]$ |
\(y^2=x^3-x^2+668848x+91587311\) |
62.2.0.a.1 |
$[(-126581/37, 272515941/37)]$ |
| 60016.j1 |
60016k1 |
60016.j |
60016k |
$2$ |
$3$ |
\( 2^{4} \cdot 11^{2} \cdot 31 \) |
\( - 2^{4} \cdot 11^{6} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4092$ |
$16$ |
$0$ |
$1.931318811$ |
$1$ |
|
$0$ |
$25920$ |
$0.427186$ |
$-87808/31$ |
$0.69864$ |
$2.63754$ |
$[0, -1, 0, -282, 2411]$ |
\(y^2=x^3-x^2-282x+2411\) |
3.4.0.a.1, 62.2.0.a.1, 132.8.0.?, 186.8.0.?, 4092.16.0.? |
$[(5/2, 363/2)]$ |
| 60016.j2 |
60016k2 |
60016.j |
60016k |
$2$ |
$3$ |
\( 2^{4} \cdot 11^{2} \cdot 31 \) |
\( - 2^{4} \cdot 11^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4092$ |
$16$ |
$0$ |
$5.793956433$ |
$1$ |
|
$0$ |
$77760$ |
$0.976492$ |
$38112512/29791$ |
$0.88754$ |
$3.14623$ |
$[0, -1, 0, 2138, -23241]$ |
\(y^2=x^3-x^2+2138x-23241\) |
3.4.0.a.1, 62.2.0.a.1, 132.8.0.?, 186.8.0.?, 4092.16.0.? |
$[(3525/2, 209451/2)]$ |
| 60016.k1 |
60016e1 |
60016.k |
60016e |
$1$ |
$1$ |
\( 2^{4} \cdot 11^{2} \cdot 31 \) |
\( - 2^{4} \cdot 11^{8} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$62$ |
$2$ |
$0$ |
$3.320930296$ |
$1$ |
|
$2$ |
$84480$ |
$0.916511$ |
$-233644288/3751$ |
$0.76580$ |
$3.31353$ |
$[0, -1, 0, -3912, 96791]$ |
\(y^2=x^3-x^2-3912x+96791\) |
62.2.0.a.1 |
$[(35, 39)]$ |
| 60016.l1 |
60016i3 |
60016.l |
60016i |
$3$ |
$9$ |
\( 2^{4} \cdot 11^{2} \cdot 31 \) |
\( - 2^{13} \cdot 11^{15} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$24552$ |
$144$ |
$3$ |
$11.13747790$ |
$1$ |
|
$0$ |
$1866240$ |
$2.761806$ |
$-888751018248625/146192756842$ |
$0.95164$ |
$5.21489$ |
$[0, -1, 0, -3877848, -3329579152]$ |
\(y^2=x^3-x^2-3877848x-3329579152\) |
3.4.0.a.1, 9.12.0.a.1, 132.8.0.?, 279.36.0.?, 396.24.0.?, $\ldots$ |
$[(532728916/471, 3620432922040/471)]$ |
| 60016.l2 |
60016i1 |
60016.l |
60016i |
$3$ |
$9$ |
\( 2^{4} \cdot 11^{2} \cdot 31 \) |
\( - 2^{21} \cdot 11^{7} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$24552$ |
$144$ |
$3$ |
$1.237497545$ |
$1$ |
|
$0$ |
$207360$ |
$1.663193$ |
$-3981876625/174592$ |
$0.85035$ |
$4.07941$ |
$[0, -1, 0, -63928, 6474096]$ |
\(y^2=x^3-x^2-63928x+6474096\) |
3.4.0.a.1, 9.12.0.a.1, 132.8.0.?, 279.36.0.?, 396.24.0.?, $\ldots$ |
$[(1180/3, 15488/3)]$ |
| 60016.l3 |
60016i2 |
60016.l |
60016i |
$3$ |
$9$ |
\( 2^{4} \cdot 11^{2} \cdot 31 \) |
\( - 2^{15} \cdot 11^{9} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$24552$ |
$144$ |
$3$ |
$3.712492636$ |
$1$ |
|
$0$ |
$622080$ |
$2.212498$ |
$514885403375/317214568$ |
$0.94093$ |
$4.51470$ |
$[0, -1, 0, 323272, 17873264]$ |
\(y^2=x^3-x^2+323272x+17873264\) |
3.12.0.a.1, 132.24.0.?, 279.36.0.?, 744.24.0.?, 2232.72.0.?, $\ldots$ |
$[(15436/3, 2023120/3)]$ |
| 60016.m1 |
60016c1 |
60016.m |
60016c |
$1$ |
$1$ |
\( 2^{4} \cdot 11^{2} \cdot 31 \) |
\( - 2^{4} \cdot 11^{6} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$62$ |
$2$ |
$0$ |
$3.600979779$ |
$1$ |
|
$0$ |
$22400$ |
$0.395627$ |
$-256/31$ |
$0.78373$ |
$2.54976$ |
$[0, -1, 0, -40, 1443]$ |
\(y^2=x^3-x^2-40x+1443\) |
62.2.0.a.1 |
$[(273/4, 4719/4)]$ |
| 60016.n1 |
60016j1 |
60016.n |
60016j |
$1$ |
$1$ |
\( 2^{4} \cdot 11^{2} \cdot 31 \) |
\( - 2^{4} \cdot 11^{8} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$62$ |
$2$ |
$0$ |
$8.579116740$ |
$1$ |
|
$0$ |
$34560$ |
$0.805086$ |
$6243584/3751$ |
$0.76319$ |
$2.98182$ |
$[0, -1, 0, 1170, -3397]$ |
\(y^2=x^3-x^2+1170x-3397\) |
62.2.0.a.1 |
$[(4901/5, 347349/5)]$ |
| 60016.o1 |
60016d2 |
60016.o |
60016d |
$2$ |
$2$ |
\( 2^{4} \cdot 11^{2} \cdot 31 \) |
\( 2^{11} \cdot 11^{6} \cdot 31^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$248$ |
$12$ |
$0$ |
$3.954411202$ |
$1$ |
|
$1$ |
$89600$ |
$1.098288$ |
$1825346/961$ |
$0.88772$ |
$3.31104$ |
$[0, -1, 0, -3912, -26992]$ |
\(y^2=x^3-x^2-3912x-26992\) |
2.3.0.a.1, 8.6.0.b.1, 124.6.0.?, 248.12.0.? |
$[(712/3, 10540/3)]$ |
| 60016.o2 |
60016d1 |
60016.o |
60016d |
$2$ |
$2$ |
\( 2^{4} \cdot 11^{2} \cdot 31 \) |
\( - 2^{10} \cdot 11^{6} \cdot 31 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$248$ |
$12$ |
$0$ |
$7.908822404$ |
$1$ |
|
$1$ |
$44800$ |
$0.751715$ |
$48668/31$ |
$0.79741$ |
$2.91861$ |
$[0, -1, 0, 928, -3760]$ |
\(y^2=x^3-x^2+928x-3760\) |
2.3.0.a.1, 8.6.0.c.1, 62.6.0.b.1, 248.12.0.? |
$[(2056/15, 247996/15)]$ |