Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
55275.a1 |
55275m1 |
55275.a |
55275m |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3 \cdot 5^{6} \cdot 11 \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4422$ |
$2$ |
$0$ |
$4.937977553$ |
$1$ |
|
$2$ |
$25920$ |
$0.262983$ |
$-207474688/2211$ |
$0.76933$ |
$2.63967$ |
$[0, 1, 1, -308, -2206]$ |
\(y^2+y=x^3+x^2-308x-2206\) |
4422.2.0.? |
$[(129, 1456)]$ |
55275.b1 |
55275e2 |
55275.b |
55275e |
$2$ |
$2$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{2} \cdot 5^{7} \cdot 11 \cdot 67^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$44220$ |
$12$ |
$0$ |
$2.536879956$ |
$1$ |
|
$14$ |
$58368$ |
$0.954831$ |
$2912566550041/2222055$ |
$0.84611$ |
$3.51249$ |
$[1, 1, 1, -7438, -249844]$ |
\(y^2+xy+y=x^3+x^2-7438x-249844\) |
2.3.0.a.1, 220.6.0.?, 804.6.0.?, 44220.12.0.? |
$[(-50, 37), (100, 87)]$ |
55275.b2 |
55275e1 |
55275.b |
55275e |
$2$ |
$2$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3 \cdot 5^{8} \cdot 11^{2} \cdot 67 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$44220$ |
$12$ |
$0$ |
$2.536879956$ |
$1$ |
|
$11$ |
$29184$ |
$0.608258$ |
$1263214441/608025$ |
$0.78854$ |
$2.80342$ |
$[1, 1, 1, -563, -2344]$ |
\(y^2+xy+y=x^3+x^2-563x-2344\) |
2.3.0.a.1, 220.6.0.?, 402.6.0.?, 44220.12.0.? |
$[(50, 287), (-20, 47)]$ |
55275.c1 |
55275c1 |
55275.c |
55275c |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{7} \cdot 5^{2} \cdot 11^{5} \cdot 67^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$5.600783460$ |
$1$ |
|
$2$ |
$114240$ |
$1.288164$ |
$5525932941095/1581109012593$ |
$1.01344$ |
$3.54949$ |
$[1, 1, 1, 1077, -301734]$ |
\(y^2+xy+y=x^3+x^2+1077x-301734\) |
132.2.0.? |
$[(2174, 100317)]$ |
55275.d1 |
55275f4 |
55275.d |
55275f |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{5} \cdot 5^{6} \cdot 11 \cdot 67^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$88440$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$491520$ |
$1.872221$ |
$326765283429753433/53863946433$ |
$0.96017$ |
$4.57732$ |
$[1, 1, 1, -358738, 82540406]$ |
\(y^2+xy+y=x^3+x^2-358738x+82540406\) |
2.3.0.a.1, 4.6.0.c.1, 60.12.0-4.c.1.1, 66.6.0.a.1, 132.12.0.?, $\ldots$ |
$[ ]$ |
55275.d2 |
55275f2 |
55275.d |
55275f |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{10} \cdot 5^{6} \cdot 11^{2} \cdot 67^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$44220$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$245760$ |
$1.525648$ |
$105535468883593/32073586281$ |
$0.92441$ |
$3.84125$ |
$[1, 1, 1, -24613, 1013906]$ |
\(y^2+xy+y=x^3+x^2-24613x+1013906\) |
2.6.0.a.1, 60.12.0-2.a.1.1, 132.12.0.?, 220.12.0.?, 660.24.0.?, $\ldots$ |
$[ ]$ |
55275.d3 |
55275f1 |
55275.d |
55275f |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{5} \cdot 5^{6} \cdot 11^{4} \cdot 67 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$88440$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$122880$ |
$1.179073$ |
$6045477024313/238370121$ |
$0.89496$ |
$3.57937$ |
$[1, 1, 1, -9488, -347344]$ |
\(y^2+xy+y=x^3+x^2-9488x-347344\) |
2.3.0.a.1, 4.6.0.c.1, 60.12.0-4.c.1.2, 264.12.0.?, 402.6.0.?, $\ldots$ |
$[ ]$ |
55275.d4 |
55275f3 |
55275.d |
55275f |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{20} \cdot 5^{6} \cdot 11 \cdot 67 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$88440$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$491520$ |
$1.872221$ |
$2177941476727367/2569760103537$ |
$1.10133$ |
$4.12194$ |
$[1, 1, 1, 67512, 6909906]$ |
\(y^2+xy+y=x^3+x^2+67512x+6909906\) |
2.3.0.a.1, 4.6.0.c.1, 120.12.0.?, 220.12.0.?, 264.12.0.?, $\ldots$ |
$[ ]$ |
55275.e1 |
55275k2 |
55275.e |
55275k |
$2$ |
$2$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{2} \cdot 5^{6} \cdot 11^{6} \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$2.939710107$ |
$1$ |
|
$2$ |
$103680$ |
$1.269783$ |
$9454162623625/1068251283$ |
$0.90037$ |
$3.62031$ |
$[1, 0, 0, -11013, 398142]$ |
\(y^2+xy=x^3-11013x+398142\) |
2.3.0.a.1, 132.6.0.?, 268.6.0.?, 8844.12.0.? |
$[(-93, 834)]$ |
55275.e2 |
55275k1 |
55275.e |
55275k |
$2$ |
$2$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3 \cdot 5^{6} \cdot 11^{3} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$5.879420215$ |
$1$ |
|
$1$ |
$51840$ |
$0.923208$ |
$129938649625/17924577$ |
$0.86502$ |
$3.22772$ |
$[1, 0, 0, -2638, -45733]$ |
\(y^2+xy=x^3-2638x-45733\) |
2.3.0.a.1, 66.6.0.a.1, 268.6.0.?, 8844.12.0.? |
$[(-293/3, 2515/3)]$ |
55275.f1 |
55275p1 |
55275.f |
55275p |
$2$ |
$2$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{3} \cdot 5^{8} \cdot 11^{2} \cdot 67 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$110592$ |
$1.159010$ |
$91422999252649/5472225$ |
$0.87372$ |
$3.82810$ |
$[1, 0, 0, -23463, -1385208]$ |
\(y^2+xy=x^3-23463x-1385208\) |
2.3.0.a.1, 44.6.0.c.1, 402.6.0.?, 8844.12.0.? |
$[ ]$ |
55275.f2 |
55275p2 |
55275.f |
55275p |
$2$ |
$2$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{6} \cdot 5^{10} \cdot 11 \cdot 67^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$221184$ |
$1.505585$ |
$-76273573823929/22498306875$ |
$0.87868$ |
$3.84923$ |
$[1, 0, 0, -22088, -1554333]$ |
\(y^2+xy=x^3-22088x-1554333\) |
2.3.0.a.1, 22.6.0.a.1, 804.6.0.?, 8844.12.0.? |
$[ ]$ |
55275.g1 |
55275d1 |
55275.g |
55275d |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{18} \cdot 5^{2} \cdot 11^{2} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$189216$ |
$1.345177$ |
$-1891233955840/3140817904323$ |
$1.04240$ |
$3.61256$ |
$[0, -1, 1, -753, -426157]$ |
\(y^2+y=x^3-x^2-753x-426157\) |
134.2.0.? |
$[ ]$ |
55275.h1 |
55275h1 |
55275.h |
55275h |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{2} \cdot 5^{4} \cdot 11^{2} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$0.637799943$ |
$1$ |
|
$4$ |
$13344$ |
$0.149091$ |
$819200/72963$ |
$0.84034$ |
$2.29702$ |
$[0, -1, 1, 17, 318]$ |
\(y^2+y=x^3-x^2+17x+318\) |
134.2.0.? |
$[(-2, 16)]$ |
55275.i1 |
55275a3 |
55275.i |
55275a |
$3$ |
$9$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3 \cdot 5^{6} \cdot 11^{9} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$66330$ |
$144$ |
$3$ |
$34.02507108$ |
$1$ |
|
$0$ |
$419904$ |
$1.961006$ |
$-439308781656997888/473947485891$ |
$1.03256$ |
$4.60459$ |
$[0, -1, 1, -395933, -95849107]$ |
\(y^2+y=x^3-x^2-395933x-95849107\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 45.24.0-9.a.1.2, 603.36.0.?, $\ldots$ |
$[(413250593219773/713911, 3910614051036525946233/713911)]$ |
55275.i2 |
55275a1 |
55275.i |
55275a |
$3$ |
$9$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{9} \cdot 5^{6} \cdot 11 \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$66330$ |
$144$ |
$3$ |
$3.780563453$ |
$1$ |
|
$2$ |
$46656$ |
$0.862393$ |
$-2258403328/14506371$ |
$0.90148$ |
$3.08493$ |
$[0, -1, 1, -683, 24143]$ |
\(y^2+y=x^3-x^2-683x+24143\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 45.24.0-9.a.1.1, 603.36.0.?, $\ldots$ |
$[(13, 131)]$ |
55275.i3 |
55275a2 |
55275.i |
55275a |
$3$ |
$9$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{3} \cdot 5^{6} \cdot 11^{3} \cdot 67^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$66330$ |
$144$ |
$3$ |
$11.34169036$ |
$1$ |
|
$0$ |
$139968$ |
$1.411699$ |
$1580352929792/10808519931$ |
$1.01300$ |
$3.67457$ |
$[0, -1, 1, 6067, -600232]$ |
\(y^2+y=x^3-x^2+6067x-600232\) |
3.12.0.a.1, 15.24.0-3.a.1.1, 603.36.0.?, 3015.72.0.?, 4422.24.1.?, $\ldots$ |
$[(77848/11, 21837408/11)]$ |
55275.j1 |
55275r1 |
55275.j |
55275r |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{18} \cdot 5^{8} \cdot 11^{2} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1.517551157$ |
$1$ |
|
$2$ |
$946080$ |
$2.149895$ |
$-1891233955840/3140817904323$ |
$1.04240$ |
$4.49686$ |
$[0, 1, 1, -18833, -53307256]$ |
\(y^2+y=x^3+x^2-18833x-53307256\) |
134.2.0.? |
$[(532, 9355)]$ |
55275.k1 |
55275n1 |
55275.k |
55275n |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{2} \cdot 5^{10} \cdot 11^{2} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$66720$ |
$0.953810$ |
$819200/72963$ |
$0.84034$ |
$3.18132$ |
$[0, 1, 1, 417, 40619]$ |
\(y^2+y=x^3+x^2+417x+40619\) |
134.2.0.? |
$[ ]$ |
55275.l1 |
55275b2 |
55275.l |
55275b |
$2$ |
$2$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{6} \cdot 5^{7} \cdot 11 \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$44220$ |
$12$ |
$0$ |
$5.308790316$ |
$1$ |
|
$0$ |
$92160$ |
$1.151194$ |
$4011342040369/179986455$ |
$0.84986$ |
$3.54180$ |
$[1, 1, 0, -8275, -281750]$ |
\(y^2+xy=x^3+x^2-8275x-281750\) |
2.3.0.a.1, 220.6.0.?, 804.6.0.?, 44220.12.0.? |
$[(-181/2, 589/2)]$ |
55275.l2 |
55275b1 |
55275.l |
55275b |
$2$ |
$2$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{3} \cdot 5^{8} \cdot 11^{2} \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$44220$ |
$12$ |
$0$ |
$2.654395158$ |
$1$ |
|
$3$ |
$46080$ |
$0.804621$ |
$19443408769/5472225$ |
$0.91817$ |
$3.05377$ |
$[1, 1, 0, -1400, 13875]$ |
\(y^2+xy=x^3+x^2-1400x+13875\) |
2.3.0.a.1, 220.6.0.?, 402.6.0.?, 44220.12.0.? |
$[(-14, 183)]$ |
55275.m1 |
55275o4 |
55275.m |
55275o |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3 \cdot 5^{14} \cdot 11 \cdot 67 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$88440$ |
$48$ |
$0$ |
$1$ |
$16$ |
$2$ |
$0$ |
$565248$ |
$1.721088$ |
$181938238527312721/863671875$ |
$0.92162$ |
$4.52369$ |
$[1, 0, 1, -295126, -61734727]$ |
\(y^2+xy+y=x^3-295126x-61734727\) |
2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.5, 88.12.0.?, 220.12.0.?, $\ldots$ |
$[ ]$ |
55275.m2 |
55275o2 |
55275.m |
55275o |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{2} \cdot 5^{10} \cdot 11^{2} \cdot 67^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$44220$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$2$ |
$282624$ |
$1.374516$ |
$46659888108001/3055325625$ |
$0.87012$ |
$3.76651$ |
$[1, 0, 1, -18751, -932227]$ |
\(y^2+xy+y=x^3-18751x-932227\) |
2.6.0.a.1, 20.12.0-2.a.1.1, 44.12.0.b.1, 220.24.0.?, 804.12.0.?, $\ldots$ |
$[ ]$ |
55275.m3 |
55275o1 |
55275.m |
55275o |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3 \cdot 5^{8} \cdot 11^{4} \cdot 67 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$88440$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$141312$ |
$1.027941$ |
$337298881681/73571025$ |
$0.83244$ |
$3.31507$ |
$[1, 0, 1, -3626, 66023]$ |
\(y^2+xy+y=x^3-3626x+66023\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 88.12.0.?, 402.6.0.?, $\ldots$ |
$[ ]$ |
55275.m4 |
55275o3 |
55275.m |
55275o |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{4} \cdot 5^{8} \cdot 11 \cdot 67^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$88440$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$565248$ |
$1.721088$ |
$26997300089999/448866220275$ |
$0.91579$ |
$4.02066$ |
$[1, 0, 1, 15624, -3957227]$ |
\(y^2+xy+y=x^3+15624x-3957227\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 22.6.0.a.1, 44.12.0.g.1, $\ldots$ |
$[ ]$ |
55275.n1 |
55275i4 |
55275.n |
55275i |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3 \cdot 5^{7} \cdot 11^{8} \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$8040$ |
$48$ |
$0$ |
$17.35422418$ |
$1$ |
|
$0$ |
$307200$ |
$1.795073$ |
$20106118884162961/215430675405$ |
$0.96970$ |
$4.32199$ |
$[1, 0, 1, -141626, -20335477]$ |
\(y^2+xy+y=x^3-141626x-20335477\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 40.24.0-40.ba.1.12, 1608.24.0.?, 2010.6.0.?, $\ldots$ |
$[(29409689/152, 149315664153/152)]$ |
55275.n2 |
55275i2 |
55275.n |
55275i |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{2} \cdot 5^{8} \cdot 11^{4} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$4020$ |
$48$ |
$0$ |
$8.677112094$ |
$1$ |
|
$2$ |
$153600$ |
$1.448500$ |
$28993860495361/14787776025$ |
$0.89152$ |
$3.72293$ |
$[1, 0, 1, -16001, 267023]$ |
\(y^2+xy+y=x^3-16001x+267023\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 20.24.0-20.a.1.1, 804.24.0.?, 4020.48.0.? |
$[(80049/8, 22215467/8)]$ |
55275.n3 |
55275i1 |
55275.n |
55275i |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3 \cdot 5^{10} \cdot 11^{2} \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$8040$ |
$48$ |
$0$ |
$4.338556047$ |
$1$ |
|
$1$ |
$76800$ |
$1.101925$ |
$15107691357361/15200625$ |
$0.85988$ |
$3.66324$ |
$[1, 0, 1, -12876, 560773]$ |
\(y^2+xy+y=x^3-12876x+560773\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 20.12.0-4.c.1.2, 40.24.0-40.ba.1.10, $\ldots$ |
$[(3103/7, -4432/7)]$ |
55275.n4 |
55275i3 |
55275.n |
55275i |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{4} \cdot 5^{7} \cdot 11^{2} \cdot 67^{4} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$8040$ |
$48$ |
$0$ |
$4.338556047$ |
$1$ |
|
$4$ |
$307200$ |
$1.795073$ |
$1500297830724239/987505684605$ |
$0.91979$ |
$4.08432$ |
$[1, 0, 1, 59624, 2082023]$ |
\(y^2+xy+y=x^3+59624x+2082023\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 20.24.0-20.h.1.2, 1608.24.0.?, 8040.48.0.? |
$[(417, 9766)]$ |
55275.o1 |
55275s1 |
55275.o |
55275s |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{7} \cdot 5^{8} \cdot 11^{5} \cdot 67^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$571200$ |
$2.092884$ |
$5525932941095/1581109012593$ |
$1.01344$ |
$4.43379$ |
$[1, 0, 1, 26924, -37770577]$ |
\(y^2+xy+y=x^3+26924x-37770577\) |
132.2.0.? |
$[ ]$ |
55275.p1 |
55275j1 |
55275.p |
55275j |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{7} \cdot 5^{6} \cdot 11^{4} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$804$ |
$2$ |
$0$ |
$1.402985601$ |
$1$ |
|
$2$ |
$145152$ |
$1.274441$ |
$-6570725617/2145331089$ |
$0.95204$ |
$3.53474$ |
$[1, 0, 1, -976, 278723]$ |
\(y^2+xy+y=x^3-976x+278723\) |
804.2.0.? |
$[(-59, 392)]$ |
55275.q1 |
55275g1 |
55275.q |
55275g |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{6} \cdot 5^{8} \cdot 11^{2} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$235008$ |
$1.170330$ |
$-8569817657344/147750075$ |
$0.85549$ |
$3.61401$ |
$[0, -1, 1, -10658, 433343]$ |
\(y^2+y=x^3-x^2-10658x+433343\) |
134.2.0.? |
$[ ]$ |
55275.r1 |
55275q1 |
55275.r |
55275q |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{30} \cdot 5^{8} \cdot 11^{2} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$15275520$ |
$3.248898$ |
$344981836779052322816/41728985197282986075$ |
$1.02635$ |
$5.70365$ |
$[0, 1, 1, 3652842, -38755382281]$ |
\(y^2+y=x^3+x^2+3652842x-38755382281\) |
134.2.0.? |
$[ ]$ |
55275.s1 |
55275l1 |
55275.s |
55275l |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{17} \cdot 5^{6} \cdot 11^{3} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4422$ |
$2$ |
$0$ |
$16.83008148$ |
$1$ |
|
$0$ |
$1850688$ |
$2.336967$ |
$-98311244861358051328/11516332315851$ |
$0.99932$ |
$5.09992$ |
$[0, 1, 1, -2403808, -1435437581]$ |
\(y^2+y=x^3+x^2-2403808x-1435437581\) |
4422.2.0.? |
$[(122553197/146, 1301237669129/146)]$ |