Learn more

Refine search


Results (34 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
55275.a1 55275.a \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\mathsf{trivial}$ $4.937977553$ $[0, 1, 1, -308, -2206]$ \(y^2+y=x^3+x^2-308x-2206\) 4422.2.0.? $[(129, 1456)]$
55275.b1 55275.b \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $2$ $\Z/2\Z$ $2.536879956$ $[1, 1, 1, -7438, -249844]$ \(y^2+xy+y=x^3+x^2-7438x-249844\) 2.3.0.a.1, 220.6.0.?, 804.6.0.?, 44220.12.0.? $[(-50, 37), (100, 87)]$
55275.b2 55275.b \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $2$ $\Z/2\Z$ $2.536879956$ $[1, 1, 1, -563, -2344]$ \(y^2+xy+y=x^3+x^2-563x-2344\) 2.3.0.a.1, 220.6.0.?, 402.6.0.?, 44220.12.0.? $[(50, 287), (-20, 47)]$
55275.c1 55275.c \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\mathsf{trivial}$ $5.600783460$ $[1, 1, 1, 1077, -301734]$ \(y^2+xy+y=x^3+x^2+1077x-301734\) 132.2.0.? $[(2174, 100317)]$
55275.d1 55275.d \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -358738, 82540406]$ \(y^2+xy+y=x^3+x^2-358738x+82540406\) 2.3.0.a.1, 4.6.0.c.1, 60.12.0-4.c.1.1, 66.6.0.a.1, 132.12.0.?, $\ldots$ $[ ]$
55275.d2 55275.d \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -24613, 1013906]$ \(y^2+xy+y=x^3+x^2-24613x+1013906\) 2.6.0.a.1, 60.12.0-2.a.1.1, 132.12.0.?, 220.12.0.?, 660.24.0.?, $\ldots$ $[ ]$
55275.d3 55275.d \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -9488, -347344]$ \(y^2+xy+y=x^3+x^2-9488x-347344\) 2.3.0.a.1, 4.6.0.c.1, 60.12.0-4.c.1.2, 264.12.0.?, 402.6.0.?, $\ldots$ $[ ]$
55275.d4 55275.d \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 67512, 6909906]$ \(y^2+xy+y=x^3+x^2+67512x+6909906\) 2.3.0.a.1, 4.6.0.c.1, 120.12.0.?, 220.12.0.?, 264.12.0.?, $\ldots$ $[ ]$
55275.e1 55275.e \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\Z/2\Z$ $2.939710107$ $[1, 0, 0, -11013, 398142]$ \(y^2+xy=x^3-11013x+398142\) 2.3.0.a.1, 132.6.0.?, 268.6.0.?, 8844.12.0.? $[(-93, 834)]$
55275.e2 55275.e \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\Z/2\Z$ $5.879420215$ $[1, 0, 0, -2638, -45733]$ \(y^2+xy=x^3-2638x-45733\) 2.3.0.a.1, 66.6.0.a.1, 268.6.0.?, 8844.12.0.? $[(-293/3, 2515/3)]$
55275.f1 55275.f \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -23463, -1385208]$ \(y^2+xy=x^3-23463x-1385208\) 2.3.0.a.1, 44.6.0.c.1, 402.6.0.?, 8844.12.0.? $[ ]$
55275.f2 55275.f \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -22088, -1554333]$ \(y^2+xy=x^3-22088x-1554333\) 2.3.0.a.1, 22.6.0.a.1, 804.6.0.?, 8844.12.0.? $[ ]$
55275.g1 55275.g \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -753, -426157]$ \(y^2+y=x^3-x^2-753x-426157\) 134.2.0.? $[ ]$
55275.h1 55275.h \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\mathsf{trivial}$ $0.637799943$ $[0, -1, 1, 17, 318]$ \(y^2+y=x^3-x^2+17x+318\) 134.2.0.? $[(-2, 16)]$
55275.i1 55275.i \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\mathsf{trivial}$ $34.02507108$ $[0, -1, 1, -395933, -95849107]$ \(y^2+y=x^3-x^2-395933x-95849107\) 3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 45.24.0-9.a.1.2, 603.36.0.?, $\ldots$ $[(413250593219773/713911, 3910614051036525946233/713911)]$
55275.i2 55275.i \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\mathsf{trivial}$ $3.780563453$ $[0, -1, 1, -683, 24143]$ \(y^2+y=x^3-x^2-683x+24143\) 3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 45.24.0-9.a.1.1, 603.36.0.?, $\ldots$ $[(13, 131)]$
55275.i3 55275.i \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\mathsf{trivial}$ $11.34169036$ $[0, -1, 1, 6067, -600232]$ \(y^2+y=x^3-x^2+6067x-600232\) 3.12.0.a.1, 15.24.0-3.a.1.1, 603.36.0.?, 3015.72.0.?, 4422.24.1.?, $\ldots$ $[(77848/11, 21837408/11)]$
55275.j1 55275.j \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\mathsf{trivial}$ $1.517551157$ $[0, 1, 1, -18833, -53307256]$ \(y^2+y=x^3+x^2-18833x-53307256\) 134.2.0.? $[(532, 9355)]$
55275.k1 55275.k \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 417, 40619]$ \(y^2+y=x^3+x^2+417x+40619\) 134.2.0.? $[ ]$
55275.l1 55275.l \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\Z/2\Z$ $5.308790316$ $[1, 1, 0, -8275, -281750]$ \(y^2+xy=x^3+x^2-8275x-281750\) 2.3.0.a.1, 220.6.0.?, 804.6.0.?, 44220.12.0.? $[(-181/2, 589/2)]$
55275.l2 55275.l \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\Z/2\Z$ $2.654395158$ $[1, 1, 0, -1400, 13875]$ \(y^2+xy=x^3+x^2-1400x+13875\) 2.3.0.a.1, 220.6.0.?, 402.6.0.?, 44220.12.0.? $[(-14, 183)]$
55275.m1 55275.m \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -295126, -61734727]$ \(y^2+xy+y=x^3-295126x-61734727\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.5, 88.12.0.?, 220.12.0.?, $\ldots$ $[ ]$
55275.m2 55275.m \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -18751, -932227]$ \(y^2+xy+y=x^3-18751x-932227\) 2.6.0.a.1, 20.12.0-2.a.1.1, 44.12.0.b.1, 220.24.0.?, 804.12.0.?, $\ldots$ $[ ]$
55275.m3 55275.m \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -3626, 66023]$ \(y^2+xy+y=x^3-3626x+66023\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 88.12.0.?, 402.6.0.?, $\ldots$ $[ ]$
55275.m4 55275.m \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 15624, -3957227]$ \(y^2+xy+y=x^3+15624x-3957227\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 22.6.0.a.1, 44.12.0.g.1, $\ldots$ $[ ]$
55275.n1 55275.n \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\Z/2\Z$ $17.35422418$ $[1, 0, 1, -141626, -20335477]$ \(y^2+xy+y=x^3-141626x-20335477\) 2.3.0.a.1, 4.12.0-4.c.1.2, 40.24.0-40.ba.1.12, 1608.24.0.?, 2010.6.0.?, $\ldots$ $[(29409689/152, 149315664153/152)]$
55275.n2 55275.n \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $8.677112094$ $[1, 0, 1, -16001, 267023]$ \(y^2+xy+y=x^3-16001x+267023\) 2.6.0.a.1, 4.12.0-2.a.1.1, 20.24.0-20.a.1.1, 804.24.0.?, 4020.48.0.? $[(80049/8, 22215467/8)]$
55275.n3 55275.n \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\Z/2\Z$ $4.338556047$ $[1, 0, 1, -12876, 560773]$ \(y^2+xy+y=x^3-12876x+560773\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 20.12.0-4.c.1.2, 40.24.0-40.ba.1.10, $\ldots$ $[(3103/7, -4432/7)]$
55275.n4 55275.n \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\Z/4\Z$ $4.338556047$ $[1, 0, 1, 59624, 2082023]$ \(y^2+xy+y=x^3+59624x+2082023\) 2.3.0.a.1, 4.12.0-4.c.1.1, 20.24.0-20.h.1.2, 1608.24.0.?, 8040.48.0.? $[(417, 9766)]$
55275.o1 55275.o \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 26924, -37770577]$ \(y^2+xy+y=x^3+26924x-37770577\) 132.2.0.? $[ ]$
55275.p1 55275.p \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\mathsf{trivial}$ $1.402985601$ $[1, 0, 1, -976, 278723]$ \(y^2+xy+y=x^3-976x+278723\) 804.2.0.? $[(-59, 392)]$
55275.q1 55275.q \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -10658, 433343]$ \(y^2+y=x^3-x^2-10658x+433343\) 134.2.0.? $[ ]$
55275.r1 55275.r \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 3652842, -38755382281]$ \(y^2+y=x^3+x^2+3652842x-38755382281\) 134.2.0.? $[ ]$
55275.s1 55275.s \( 3 \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\mathsf{trivial}$ $16.83008148$ $[0, 1, 1, -2403808, -1435437581]$ \(y^2+y=x^3+x^2-2403808x-1435437581\) 4422.2.0.? $[(122553197/146, 1301237669129/146)]$
  displayed columns for results