Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
5160.a1 |
5160b1 |
5160.a |
5160b |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( - 2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 43 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$86$ |
$2$ |
$0$ |
$0.097342123$ |
$1$ |
|
$30$ |
$1024$ |
$-0.060075$ |
$-30505984/9675$ |
$0.77867$ |
$2.71569$ |
$[0, -1, 0, -41, 141]$ |
\(y^2=x^3-x^2-41x+141\) |
86.2.0.? |
$[(1, 10), (5, 6)]$ |
5160.b1 |
5160g2 |
5160.b |
5160g |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( 2^{11} \cdot 3^{10} \cdot 5 \cdot 43^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5160$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$6400$ |
$1.027973$ |
$2727138195938/545908005$ |
$0.92415$ |
$4.24146$ |
$[0, -1, 0, -3696, -68724]$ |
\(y^2=x^3-x^2-3696x-68724\) |
2.3.0.a.1, 40.6.0.b.1, 516.6.0.?, 5160.12.0.? |
$[ ]$ |
5160.b2 |
5160g1 |
5160.b |
5160g |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( 2^{10} \cdot 3^{5} \cdot 5^{2} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5160$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3200$ |
$0.681400$ |
$4615962240676/261225$ |
$0.91641$ |
$4.22193$ |
$[0, -1, 0, -3496, -78404]$ |
\(y^2=x^3-x^2-3496x-78404\) |
2.3.0.a.1, 40.6.0.c.1, 258.6.0.?, 5160.12.0.? |
$[ ]$ |
5160.c1 |
5160i2 |
5160.c |
5160i |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( 2^{11} \cdot 3^{2} \cdot 5 \cdot 43^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5160$ |
$12$ |
$0$ |
$2.357319856$ |
$1$ |
|
$3$ |
$1792$ |
$0.318580$ |
$909513218/83205$ |
$0.84154$ |
$3.30495$ |
$[0, -1, 0, -256, -1364]$ |
\(y^2=x^3-x^2-256x-1364\) |
2.3.0.a.1, 40.6.0.b.1, 516.6.0.?, 5160.12.0.? |
$[(-7, 6)]$ |
5160.c2 |
5160i1 |
5160.c |
5160i |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( 2^{10} \cdot 3 \cdot 5^{2} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5160$ |
$12$ |
$0$ |
$1.178659928$ |
$1$ |
|
$5$ |
$896$ |
$-0.027994$ |
$19307236/3225$ |
$0.89206$ |
$2.77323$ |
$[0, -1, 0, -56, 156]$ |
\(y^2=x^3-x^2-56x+156\) |
2.3.0.a.1, 40.6.0.c.1, 258.6.0.?, 5160.12.0.? |
$[(1, 10)]$ |
5160.d1 |
5160j1 |
5160.d |
5160j |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( - 2^{8} \cdot 3^{44} \cdot 5^{4} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$86$ |
$2$ |
$0$ |
$13.07034368$ |
$1$ |
|
$0$ |
$3153920$ |
$4.027351$ |
$27554726454844416496885738496/26465717996184551883676875$ |
$1.08222$ |
$8.30901$ |
$[0, -1, 0, 399549679, 2496643493445]$ |
\(y^2=x^3-x^2+399549679x+2496643493445\) |
86.2.0.? |
$[(770528077163/2489, 685476882728132850/2489)]$ |
5160.e1 |
5160h1 |
5160.e |
5160h |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( 2^{8} \cdot 3 \cdot 5^{2} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2580$ |
$12$ |
$0$ |
$0.729796929$ |
$1$ |
|
$7$ |
$768$ |
$-0.141499$ |
$20720464/3225$ |
$0.75125$ |
$2.61933$ |
$[0, -1, 0, -36, -60]$ |
\(y^2=x^3-x^2-36x-60\) |
2.3.0.a.1, 20.6.0.b.1, 258.6.0.?, 2580.12.0.? |
$[(-4, 2)]$ |
5160.e2 |
5160h2 |
5160.e |
5160h |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( - 2^{10} \cdot 3^{2} \cdot 5 \cdot 43^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2580$ |
$12$ |
$0$ |
$1.459593859$ |
$1$ |
|
$5$ |
$1536$ |
$0.205075$ |
$27871484/83205$ |
$0.82823$ |
$2.98289$ |
$[0, -1, 0, 64, -420]$ |
\(y^2=x^3-x^2+64x-420\) |
2.3.0.a.1, 20.6.0.a.1, 516.6.0.?, 2580.12.0.? |
$[(6, 12)]$ |
5160.f1 |
5160a1 |
5160.f |
5160a |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( - 2^{11} \cdot 3^{8} \cdot 5 \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1720$ |
$2$ |
$0$ |
$3.710423560$ |
$1$ |
|
$2$ |
$2816$ |
$0.608199$ |
$-71157653138/1410615$ |
$0.88710$ |
$3.81888$ |
$[0, -1, 0, -1096, -13844]$ |
\(y^2=x^3-x^2-1096x-13844\) |
1720.2.0.? |
$[(349, 6480)]$ |
5160.g1 |
5160k1 |
5160.g |
5160k |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( - 2^{11} \cdot 3^{4} \cdot 5^{11} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1720$ |
$2$ |
$0$ |
$4.255569348$ |
$1$ |
|
$2$ |
$21120$ |
$1.470755$ |
$9002230481662/170068359375$ |
$0.98348$ |
$4.78526$ |
$[0, -1, 0, 5504, 882220]$ |
\(y^2=x^3-x^2+5504x+882220\) |
1720.2.0.? |
$[(121, 1818)]$ |
5160.h1 |
5160c1 |
5160.h |
5160c |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( 2^{10} \cdot 3^{3} \cdot 5^{4} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$1032$ |
$12$ |
$0$ |
$1.527557675$ |
$1$ |
|
$5$ |
$2304$ |
$0.417706$ |
$3550014724/725625$ |
$0.99630$ |
$3.38317$ |
$[0, -1, 0, -320, -1668]$ |
\(y^2=x^3-x^2-320x-1668\) |
2.3.0.a.1, 8.6.0.d.1, 258.6.0.?, 1032.12.0.? |
$[(-11, 20)]$ |
5160.h2 |
5160c2 |
5160.h |
5160c |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( - 2^{11} \cdot 3^{6} \cdot 5^{2} \cdot 43^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$1032$ |
$12$ |
$0$ |
$3.055115350$ |
$1$ |
|
$3$ |
$4608$ |
$0.764279$ |
$16954370638/33698025$ |
$0.90384$ |
$3.75124$ |
$[0, -1, 0, 680, -10868]$ |
\(y^2=x^3-x^2+680x-10868\) |
2.3.0.a.1, 8.6.0.a.1, 516.6.0.?, 1032.12.0.? |
$[(29, 180)]$ |
5160.i1 |
5160e3 |
5160.i |
5160e |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( 2^{11} \cdot 3^{4} \cdot 5 \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$5160$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$6144$ |
$0.793679$ |
$41725476313778/17415$ |
$0.93732$ |
$4.56055$ |
$[0, 1, 0, -9176, 335280]$ |
\(y^2=x^3+x^2-9176x+335280\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0-4.c.1.2, 120.24.0.?, $\ldots$ |
$[ ]$ |
5160.i2 |
5160e2 |
5160.i |
5160e |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{2} \cdot 43^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$5160$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$3072$ |
$0.447105$ |
$20674973956/416025$ |
$0.86747$ |
$3.58928$ |
$[0, 1, 0, -576, 5040]$ |
\(y^2=x^3+x^2-576x+5040\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0-2.a.1.1, 120.24.0.?, 172.12.0.?, $\ldots$ |
$[ ]$ |
5160.i3 |
5160e1 |
5160.i |
5160e |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( 2^{8} \cdot 3 \cdot 5^{4} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$5160$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1536$ |
$0.100532$ |
$192143824/80625$ |
$0.81096$ |
$2.87985$ |
$[0, 1, 0, -76, -160]$ |
\(y^2=x^3+x^2-76x-160\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0-4.c.1.4, 120.24.0.?, $\ldots$ |
$[ ]$ |
5160.i4 |
5160e4 |
5160.i |
5160e |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( - 2^{11} \cdot 3 \cdot 5 \cdot 43^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$5160$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$6144$ |
$0.793679$ |
$715822/51282015$ |
$1.03514$ |
$3.84061$ |
$[0, 1, 0, 24, 15600]$ |
\(y^2=x^3+x^2+24x+15600\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0-4.c.1.1, 120.24.0.?, $\ldots$ |
$[ ]$ |
5160.j1 |
5160f1 |
5160.j |
5160f |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( - 2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$86$ |
$2$ |
$0$ |
$0.111310849$ |
$1$ |
|
$12$ |
$6144$ |
$0.985730$ |
$-162140591104/4025041875$ |
$0.97179$ |
$4.11042$ |
$[0, 1, 0, -721, -49645]$ |
\(y^2=x^3+x^2-721x-49645\) |
86.2.0.? |
$[(347, 6450)]$ |
5160.k1 |
5160l2 |
5160.k |
5160l |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( 2^{11} \cdot 3^{5} \cdot 5^{6} \cdot 43^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5160$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$9600$ |
$1.240017$ |
$34064240990978/7020421875$ |
$1.00268$ |
$4.53682$ |
$[0, 1, 0, -8576, -248160]$ |
\(y^2=x^3+x^2-8576x-248160\) |
2.3.0.a.1, 24.6.0.a.1, 860.6.0.?, 5160.12.0.? |
$[ ]$ |
5160.k2 |
5160l1 |
5160.k |
5160l |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( - 2^{10} \cdot 3^{10} \cdot 5^{3} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5160$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$4800$ |
$0.893443$ |
$161555647964/317388375$ |
$0.98613$ |
$3.93193$ |
$[0, 1, 0, 1144, -22656]$ |
\(y^2=x^3+x^2+1144x-22656\) |
2.3.0.a.1, 24.6.0.d.1, 430.6.0.?, 5160.12.0.? |
$[ ]$ |
5160.l1 |
5160d3 |
5160.l |
5160d |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( 2^{11} \cdot 3^{5} \cdot 5^{2} \cdot 43^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.8 |
2B |
$1032$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$40960$ |
$1.730839$ |
$947094050118111698/20769216075$ |
$0.99077$ |
$5.73384$ |
$[0, 1, 0, -259816, 50886320]$ |
\(y^2=x^3+x^2-259816x+50886320\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 12.12.0-4.c.1.1, 24.24.0-24.s.1.4, $\ldots$ |
$[ ]$ |
5160.l2 |
5160d2 |
5160.l |
5160d |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( 2^{10} \cdot 3^{10} \cdot 5^{4} \cdot 43^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.1 |
2Cs |
$1032$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$20480$ |
$1.384264$ |
$513591322675396/68238500625$ |
$0.95257$ |
$4.77312$ |
$[0, 1, 0, -16816, 731120]$ |
\(y^2=x^3+x^2-16816x+731120\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 24.24.0-24.b.1.2, 172.12.0.?, $\ldots$ |
$[ ]$ |
5160.l3 |
5160d1 |
5160.l |
5160d |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( 2^{8} \cdot 3^{5} \cdot 5^{8} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.12 |
2B |
$1032$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$10240$ |
$1.037691$ |
$34739908901584/4081640625$ |
$0.92466$ |
$4.29587$ |
$[0, 1, 0, -4316, -98880]$ |
\(y^2=x^3+x^2-4316x-98880\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 12.12.0-4.c.1.2, 24.24.0-24.y.1.2, $\ldots$ |
$[ ]$ |
5160.l4 |
5160d4 |
5160.l |
5160d |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( - 2^{11} \cdot 3^{20} \cdot 5^{2} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.7 |
2B |
$1032$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$40960$ |
$1.730839$ |
$969360123836302/3748293231075$ |
$0.98630$ |
$5.13173$ |
$[0, 1, 0, 26184, 3895920]$ |
\(y^2=x^3+x^2+26184x+3895920\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 24.24.0-24.y.1.8, 172.12.0.?, $\ldots$ |
$[ ]$ |
5160.m1 |
5160n3 |
5160.m |
5160n |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( 2^{10} \cdot 3 \cdot 5^{12} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$5160$ |
$48$ |
$0$ |
$1.441918754$ |
$1$ |
|
$3$ |
$9216$ |
$1.281534$ |
$54477543627364/31494140625$ |
$1.04568$ |
$4.51066$ |
$[0, 1, 0, -7960, -11392]$ |
\(y^2=x^3+x^2-7960x-11392\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 40.24.0-40.ba.1.12, 258.6.0.?, 516.24.0.?, $\ldots$ |
$[(136, 1200)]$ |
5160.m2 |
5160n2 |
5160.m |
5160n |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( 2^{8} \cdot 3^{2} \cdot 5^{6} \cdot 43^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$2580$ |
$48$ |
$0$ |
$0.720959377$ |
$1$ |
|
$13$ |
$4608$ |
$0.934961$ |
$67283921459536/260015625$ |
$1.00288$ |
$4.37320$ |
$[0, 1, 0, -5380, 149600]$ |
\(y^2=x^3+x^2-5380x+149600\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 20.24.0-20.a.1.1, 516.24.0.?, 2580.48.0.? |
$[(50, 90)]$ |
5160.m3 |
5160n1 |
5160.m |
5160n |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( 2^{4} \cdot 3 \cdot 5^{3} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$5160$ |
$48$ |
$0$ |
$1.441918754$ |
$1$ |
|
$3$ |
$2304$ |
$0.588387$ |
$1073544204384256/16125$ |
$0.97030$ |
$4.37287$ |
$[0, 1, 0, -5375, 149898]$ |
\(y^2=x^3+x^2-5375x+149898\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 20.12.0-4.c.1.2, 40.24.0-40.ba.1.10, $\ldots$ |
$[(51, 105)]$ |
5160.m4 |
5160n4 |
5160.m |
5160n |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( - 2^{10} \cdot 3^{4} \cdot 5^{3} \cdot 43^{4} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$5160$ |
$48$ |
$0$ |
$1.441918754$ |
$1$ |
|
$7$ |
$9216$ |
$1.281534$ |
$-2580786074884/34615360125$ |
$1.04688$ |
$4.52654$ |
$[0, 1, 0, -2880, 291600]$ |
\(y^2=x^3+x^2-2880x+291600\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 20.24.0-20.h.1.2, 1032.24.0.?, 5160.48.0.? |
$[(0, 540)]$ |
5160.n1 |
5160m4 |
5160.n |
5160m |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( 2^{11} \cdot 3^{3} \cdot 5 \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$5160$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$16896$ |
$1.411953$ |
$820480625548035842/5805$ |
$0.99016$ |
$5.71705$ |
$[0, 1, 0, -247680, 47361888]$ |
\(y^2=x^3+x^2-247680x+47361888\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 24.24.0-24.y.1.6, 860.12.0.?, $\ldots$ |
$[ ]$ |
5160.n2 |
5160m3 |
5160.n |
5160m |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( 2^{11} \cdot 3^{3} \cdot 5^{4} \cdot 43^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$5160$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$16896$ |
$1.411953$ |
$245245463376482/57692266875$ |
$0.95595$ |
$4.76774$ |
$[0, 1, 0, -16560, 626400]$ |
\(y^2=x^3+x^2-16560x+626400\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 24.24.0-24.s.1.1, 1720.24.0.?, 5160.48.0.? |
$[ ]$ |
5160.n3 |
5160m2 |
5160.n |
5160m |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( 2^{10} \cdot 3^{6} \cdot 5^{2} \cdot 43^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$5160$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$8448$ |
$1.065378$ |
$400649568576484/33698025$ |
$0.94741$ |
$4.74407$ |
$[0, 1, 0, -15480, 736128]$ |
\(y^2=x^3+x^2-15480x+736128\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 24.24.0-24.b.1.4, 860.24.0.?, 5160.48.0.? |
$[ ]$ |
5160.n4 |
5160m1 |
5160.n |
5160m |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
\( - 2^{8} \cdot 3^{12} \cdot 5 \cdot 43 \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$5160$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$4224$ |
$0.718805$ |
$-315278049616/114259815$ |
$0.89070$ |
$3.80271$ |
$[0, 1, 0, -900, 12960]$ |
\(y^2=x^3+x^2-900x+12960\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 24.24.0-24.y.1.4, 430.6.0.?, 860.24.0.?, $\ldots$ |
$[ ]$ |