Learn more

Refine search


Results (31 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
5160.a1 5160.a \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $2$ $\mathsf{trivial}$ $0.097342123$ $[0, -1, 0, -41, 141]$ \(y^2=x^3-x^2-41x+141\) 86.2.0.? $[(1, 10), (5, 6)]$
5160.b1 5160.b \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -3696, -68724]$ \(y^2=x^3-x^2-3696x-68724\) 2.3.0.a.1, 40.6.0.b.1, 516.6.0.?, 5160.12.0.? $[ ]$
5160.b2 5160.b \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -3496, -78404]$ \(y^2=x^3-x^2-3496x-78404\) 2.3.0.a.1, 40.6.0.c.1, 258.6.0.?, 5160.12.0.? $[ ]$
5160.c1 5160.c \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $1$ $\Z/2\Z$ $2.357319856$ $[0, -1, 0, -256, -1364]$ \(y^2=x^3-x^2-256x-1364\) 2.3.0.a.1, 40.6.0.b.1, 516.6.0.?, 5160.12.0.? $[(-7, 6)]$
5160.c2 5160.c \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $1$ $\Z/2\Z$ $1.178659928$ $[0, -1, 0, -56, 156]$ \(y^2=x^3-x^2-56x+156\) 2.3.0.a.1, 40.6.0.c.1, 258.6.0.?, 5160.12.0.? $[(1, 10)]$
5160.d1 5160.d \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $1$ $\mathsf{trivial}$ $13.07034368$ $[0, -1, 0, 399549679, 2496643493445]$ \(y^2=x^3-x^2+399549679x+2496643493445\) 86.2.0.? $[(770528077163/2489, 685476882728132850/2489)]$
5160.e1 5160.e \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $1$ $\Z/2\Z$ $0.729796929$ $[0, -1, 0, -36, -60]$ \(y^2=x^3-x^2-36x-60\) 2.3.0.a.1, 20.6.0.b.1, 258.6.0.?, 2580.12.0.? $[(-4, 2)]$
5160.e2 5160.e \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $1$ $\Z/2\Z$ $1.459593859$ $[0, -1, 0, 64, -420]$ \(y^2=x^3-x^2+64x-420\) 2.3.0.a.1, 20.6.0.a.1, 516.6.0.?, 2580.12.0.? $[(6, 12)]$
5160.f1 5160.f \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $1$ $\mathsf{trivial}$ $3.710423560$ $[0, -1, 0, -1096, -13844]$ \(y^2=x^3-x^2-1096x-13844\) 1720.2.0.? $[(349, 6480)]$
5160.g1 5160.g \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $1$ $\mathsf{trivial}$ $4.255569348$ $[0, -1, 0, 5504, 882220]$ \(y^2=x^3-x^2+5504x+882220\) 1720.2.0.? $[(121, 1818)]$
5160.h1 5160.h \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $1$ $\Z/2\Z$ $1.527557675$ $[0, -1, 0, -320, -1668]$ \(y^2=x^3-x^2-320x-1668\) 2.3.0.a.1, 8.6.0.d.1, 258.6.0.?, 1032.12.0.? $[(-11, 20)]$
5160.h2 5160.h \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $1$ $\Z/2\Z$ $3.055115350$ $[0, -1, 0, 680, -10868]$ \(y^2=x^3-x^2+680x-10868\) 2.3.0.a.1, 8.6.0.a.1, 516.6.0.?, 1032.12.0.? $[(29, 180)]$
5160.i1 5160.i \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -9176, 335280]$ \(y^2=x^3+x^2-9176x+335280\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0-4.c.1.2, 120.24.0.?, $\ldots$ $[ ]$
5160.i2 5160.i \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -576, 5040]$ \(y^2=x^3+x^2-576x+5040\) 2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0-2.a.1.1, 120.24.0.?, 172.12.0.?, $\ldots$ $[ ]$
5160.i3 5160.i \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -76, -160]$ \(y^2=x^3+x^2-76x-160\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0-4.c.1.4, 120.24.0.?, $\ldots$ $[ ]$
5160.i4 5160.i \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 24, 15600]$ \(y^2=x^3+x^2+24x+15600\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0-4.c.1.1, 120.24.0.?, $\ldots$ $[ ]$
5160.j1 5160.j \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $1$ $\mathsf{trivial}$ $0.111310849$ $[0, 1, 0, -721, -49645]$ \(y^2=x^3+x^2-721x-49645\) 86.2.0.? $[(347, 6450)]$
5160.k1 5160.k \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -8576, -248160]$ \(y^2=x^3+x^2-8576x-248160\) 2.3.0.a.1, 24.6.0.a.1, 860.6.0.?, 5160.12.0.? $[ ]$
5160.k2 5160.k \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 1144, -22656]$ \(y^2=x^3+x^2+1144x-22656\) 2.3.0.a.1, 24.6.0.d.1, 430.6.0.?, 5160.12.0.? $[ ]$
5160.l1 5160.l \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -259816, 50886320]$ \(y^2=x^3+x^2-259816x+50886320\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 12.12.0-4.c.1.1, 24.24.0-24.s.1.4, $\ldots$ $[ ]$
5160.l2 5160.l \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -16816, 731120]$ \(y^2=x^3+x^2-16816x+731120\) 2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 24.24.0-24.b.1.2, 172.12.0.?, $\ldots$ $[ ]$
5160.l3 5160.l \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -4316, -98880]$ \(y^2=x^3+x^2-4316x-98880\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 12.12.0-4.c.1.2, 24.24.0-24.y.1.2, $\ldots$ $[ ]$
5160.l4 5160.l \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 26184, 3895920]$ \(y^2=x^3+x^2+26184x+3895920\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 24.24.0-24.y.1.8, 172.12.0.?, $\ldots$ $[ ]$
5160.m1 5160.m \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $1$ $\Z/2\Z$ $1.441918754$ $[0, 1, 0, -7960, -11392]$ \(y^2=x^3+x^2-7960x-11392\) 2.3.0.a.1, 4.12.0-4.c.1.2, 40.24.0-40.ba.1.12, 258.6.0.?, 516.24.0.?, $\ldots$ $[(136, 1200)]$
5160.m2 5160.m \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.720959377$ $[0, 1, 0, -5380, 149600]$ \(y^2=x^3+x^2-5380x+149600\) 2.6.0.a.1, 4.12.0-2.a.1.1, 20.24.0-20.a.1.1, 516.24.0.?, 2580.48.0.? $[(50, 90)]$
5160.m3 5160.m \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $1$ $\Z/2\Z$ $1.441918754$ $[0, 1, 0, -5375, 149898]$ \(y^2=x^3+x^2-5375x+149898\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 20.12.0-4.c.1.2, 40.24.0-40.ba.1.10, $\ldots$ $[(51, 105)]$
5160.m4 5160.m \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $1$ $\Z/4\Z$ $1.441918754$ $[0, 1, 0, -2880, 291600]$ \(y^2=x^3+x^2-2880x+291600\) 2.3.0.a.1, 4.12.0-4.c.1.1, 20.24.0-20.h.1.2, 1032.24.0.?, 5160.48.0.? $[(0, 540)]$
5160.n1 5160.n \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -247680, 47361888]$ \(y^2=x^3+x^2-247680x+47361888\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 24.24.0-24.y.1.6, 860.12.0.?, $\ldots$ $[ ]$
5160.n2 5160.n \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -16560, 626400]$ \(y^2=x^3+x^2-16560x+626400\) 2.3.0.a.1, 4.12.0-4.c.1.2, 24.24.0-24.s.1.1, 1720.24.0.?, 5160.48.0.? $[ ]$
5160.n3 5160.n \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -15480, 736128]$ \(y^2=x^3+x^2-15480x+736128\) 2.6.0.a.1, 4.12.0-2.a.1.1, 24.24.0-24.b.1.4, 860.24.0.?, 5160.48.0.? $[ ]$
5160.n4 5160.n \( 2^{3} \cdot 3 \cdot 5 \cdot 43 \) $0$ $\Z/4\Z$ $1$ $[0, 1, 0, -900, 12960]$ \(y^2=x^3+x^2-900x+12960\) 2.3.0.a.1, 4.12.0-4.c.1.1, 24.24.0-24.y.1.4, 430.6.0.?, 860.24.0.?, $\ldots$ $[ ]$
  displayed columns for results