Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
51376.a1 |
51376z1 |
51376.a |
51376z |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{13} \cdot 13^{7} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$0.612532812$ |
$1$ |
|
$4$ |
$612864$ |
$1.705383$ |
$-25334470953/9386$ |
$0.90338$ |
$4.39420$ |
$[0, 0, 0, -165451, 25911418]$ |
\(y^2=x^3-165451x+25911418\) |
104.2.0.? |
$[(247, 338)]$ |
51376.b1 |
51376r1 |
51376.b |
51376r |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{4} \cdot 13^{11} \cdot 19 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$4.309516955$ |
$1$ |
|
$6$ |
$282240$ |
$1.516174$ |
$10150866176/7054567$ |
$0.87568$ |
$3.79860$ |
$[0, 1, 0, 19210, 465739]$ |
\(y^2=x^3+x^2+19210x+465739\) |
494.2.0.? |
$[(927, 28561), (511, 11999)]$ |
51376.c1 |
51376q1 |
51376.c |
51376q |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{16} \cdot 13^{8} \cdot 19^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.2.0.1 |
|
$152$ |
$4$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$539136$ |
$1.873453$ |
$-77086633/5776$ |
$0.84480$ |
$4.34405$ |
$[0, 1, 0, -132552, 19696756]$ |
\(y^2=x^3+x^2-132552x+19696756\) |
4.2.0.a.1, 152.4.0.? |
$[ ]$ |
51376.d1 |
51376f1 |
51376.d |
51376f |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{4} \cdot 13^{7} \cdot 19 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1.294607216$ |
$1$ |
|
$8$ |
$26880$ |
$0.727022$ |
$-4000000/247$ |
$0.76949$ |
$3.08525$ |
$[0, 1, 0, -1408, 20931]$ |
\(y^2=x^3+x^2-1408x+20931\) |
494.2.0.? |
$[(-35, 169), (29/2, 845/2)]$ |
51376.e1 |
51376p1 |
51376.e |
51376p |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{8} \cdot 13^{6} \cdot 19 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1.497782910$ |
$1$ |
|
$8$ |
$51840$ |
$0.841544$ |
$-4194304/19$ |
$1.07903$ |
$3.33660$ |
$[0, 1, 0, -3605, 82447]$ |
\(y^2=x^3+x^2-3605x+82447\) |
38.2.0.a.1 |
$[(-9, 338), (133/2, 169/2)]$ |
51376.f1 |
51376y1 |
51376.f |
51376y |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{16} \cdot 13^{2} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.2.0.1 |
|
$1976$ |
$4$ |
$0$ |
$0.863728295$ |
$1$ |
|
$4$ |
$41472$ |
$0.590979$ |
$-77086633/5776$ |
$0.84480$ |
$2.92524$ |
$[0, 1, 0, -784, 8724]$ |
\(y^2=x^3+x^2-784x+8724\) |
4.2.0.a.1, 1976.4.0.? |
$[(20, 38)]$ |
51376.g1 |
51376bc1 |
51376.g |
51376bc |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{47} \cdot 13^{3} \cdot 19^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1048320$ |
$2.526775$ |
$-251347109804029/12403865550848$ |
$1.04840$ |
$4.94408$ |
$[0, -1, 0, -273472, 511376384]$ |
\(y^2=x^3-x^2-273472x+511376384\) |
104.2.0.? |
$[ ]$ |
51376.h1 |
51376j1 |
51376.h |
51376j |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{11} \cdot 13^{9} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1.387112818$ |
$1$ |
|
$4$ |
$209664$ |
$1.735737$ |
$-101306/361$ |
$0.79856$ |
$4.07519$ |
$[0, -1, 0, -27096, 4602064]$ |
\(y^2=x^3-x^2-27096x+4602064\) |
104.2.0.? |
$[(282, 4394)]$ |
51376.i1 |
51376v3 |
51376.i |
51376v |
$3$ |
$9$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{39} \cdot 13^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$53352$ |
$1296$ |
$43$ |
$4.871435753$ |
$1$ |
|
$0$ |
$886464$ |
$2.460793$ |
$-69173457625/2550136832$ |
$1.05462$ |
$4.87117$ |
$[0, -1, 0, -231248, 344373184]$ |
\(y^2=x^3-x^2-231248x+344373184\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 156.8.0.?, $\ldots$ |
$[(21816/7, 6225920/7)]$ |
51376.i2 |
51376v1 |
51376.i |
51376v |
$3$ |
$9$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{15} \cdot 13^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$53352$ |
$1296$ |
$43$ |
$4.871435753$ |
$1$ |
|
$2$ |
$98496$ |
$1.362179$ |
$-413493625/152$ |
$0.93281$ |
$4.01480$ |
$[0, -1, 0, -41968, -3296320]$ |
\(y^2=x^3-x^2-41968x-3296320\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 156.8.0.?, $\ldots$ |
$[(760, 20080)]$ |
51376.i3 |
51376v2 |
51376.i |
51376v |
$3$ |
$9$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{21} \cdot 13^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$53352$ |
$1296$ |
$43$ |
$1.623811917$ |
$1$ |
|
$2$ |
$295488$ |
$1.911486$ |
$94196375/3511808$ |
$1.01875$ |
$4.26095$ |
$[0, -1, 0, 25632, -12587264]$ |
\(y^2=x^3-x^2+25632x-12587264\) |
3.12.0.a.1, 9.36.0.b.1, 152.2.0.?, 156.24.0.?, 171.108.4.?, $\ldots$ |
$[(528, 12160)]$ |
51376.j1 |
51376e1 |
51376.j |
51376e |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{11} \cdot 13^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$37440$ |
$0.865296$ |
$-31250/19$ |
$0.89957$ |
$3.14211$ |
$[0, -1, 0, -1408, 29600]$ |
\(y^2=x^3-x^2-1408x+29600\) |
152.2.0.? |
$[ ]$ |
51376.k1 |
51376g1 |
51376.k |
51376g |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{11} \cdot 13^{3} \cdot 19^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$0.389296807$ |
$1$ |
|
$14$ |
$16128$ |
$0.453261$ |
$-101306/361$ |
$0.79856$ |
$2.65638$ |
$[0, -1, 0, -160, 2144]$ |
\(y^2=x^3-x^2-160x+2144\) |
104.2.0.? |
$[(-4, 52), (100, 988)]$ |
51376.l1 |
51376ba1 |
51376.l |
51376ba |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{47} \cdot 13^{9} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$9.771305557$ |
$1$ |
|
$0$ |
$13628160$ |
$3.809250$ |
$-251347109804029/12403865550848$ |
$1.04840$ |
$6.36288$ |
$[0, -1, 0, -46216824, 1123309048432]$ |
\(y^2=x^3-x^2-46216824x+1123309048432\) |
104.2.0.? |
$[(-25814/3, 29972006/3)]$ |
51376.m1 |
51376s1 |
51376.m |
51376s |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{4} \cdot 13^{7} \cdot 19^{13} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$2.184691614$ |
$1$ |
|
$0$ |
$8910720$ |
$3.607903$ |
$-328568038616615609088/546688785009341767$ |
$1.05426$ |
$6.15457$ |
$[0, 0, 0, -61220081, -362938057261]$ |
\(y^2=x^3-61220081x-362938057261\) |
494.2.0.? |
$[(742105/2, 638703221/2)]$ |
51376.n1 |
51376b1 |
51376.n |
51376b |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{4} \cdot 13^{7} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1.603746678$ |
$1$ |
|
$0$ |
$26880$ |
$0.652559$ |
$6912/247$ |
$0.75459$ |
$2.86810$ |
$[0, 0, 0, 169, -6591]$ |
\(y^2=x^3+169x-6591\) |
494.2.0.? |
$[(65/2, 169/2)]$ |
51376.o1 |
51376t4 |
51376.o |
51376t |
$4$ |
$4$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( 2^{13} \cdot 13^{10} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$1976$ |
$48$ |
$0$ |
$18.51216825$ |
$1$ |
|
$1$ |
$548352$ |
$2.047852$ |
$969417177273/1085318$ |
$0.93818$ |
$4.73013$ |
$[0, 0, 0, -557531, -160077814]$ |
\(y^2=x^3-557531x-160077814\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 104.24.0.?, 152.24.0.?, $\ldots$ |
$[(-572081857/1139, 247116784530/1139)]$ |
51376.o2 |
51376t3 |
51376.o |
51376t |
$4$ |
$4$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( 2^{13} \cdot 13^{7} \cdot 19^{4} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$1976$ |
$48$ |
$0$ |
$4.628042063$ |
$1$ |
|
$7$ |
$548352$ |
$2.047852$ |
$345505073913/3388346$ |
$0.97212$ |
$4.63502$ |
$[0, 0, 0, -395291, 94844490]$ |
\(y^2=x^3-395291x+94844490\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 104.24.0.?, 152.24.0.?, 1976.48.0.? |
$[(101, 7480)]$ |
51376.o3 |
51376t2 |
51376.o |
51376t |
$4$ |
$4$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( 2^{14} \cdot 13^{8} \cdot 19^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$1976$ |
$48$ |
$0$ |
$9.256084127$ |
$1$ |
|
$3$ |
$274176$ |
$1.701277$ |
$469097433/244036$ |
$0.96358$ |
$4.02637$ |
$[0, 0, 0, -43771, -1120470]$ |
\(y^2=x^3-43771x-1120470\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 104.24.0.?, 152.24.0.?, 988.24.0.?, $\ldots$ |
$[(-7955/17, 1238160/17)]$ |
51376.o4 |
51376t1 |
51376.o |
51376t |
$4$ |
$4$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{16} \cdot 13^{7} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$1976$ |
$48$ |
$0$ |
$4.628042063$ |
$1$ |
|
$1$ |
$137088$ |
$1.354704$ |
$6128487/3952$ |
$0.83799$ |
$3.62646$ |
$[0, 0, 0, 10309, -136214]$ |
\(y^2=x^3+10309x-136214\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 104.24.0.?, 152.24.0.?, 494.6.0.?, $\ldots$ |
$[(3471/5, 249106/5)]$ |
51376.p1 |
51376d1 |
51376.p |
51376d |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{10} \cdot 13^{4} \cdot 19^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.16.0.2 |
|
$4$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$72192$ |
$1.255066$ |
$-22359484836/130321$ |
$1.09431$ |
$3.78280$ |
$[0, 0, 0, -18083, -940654]$ |
\(y^2=x^3-18083x-940654\) |
4.16.0-4.b.1.1 |
$[ ]$ |
51376.q1 |
51376a1 |
51376.q |
51376a |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{10} \cdot 13^{10} \cdot 19^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$52$ |
$16$ |
$0$ |
$18.21786285$ |
$1$ |
|
$0$ |
$938496$ |
$2.537540$ |
$-22359484836/130321$ |
$1.09431$ |
$5.20161$ |
$[0, 0, 0, -3056027, -2066616838]$ |
\(y^2=x^3-3056027x-2066616838\) |
4.8.0.b.1, 52.16.0-4.b.1.1 |
$[(2184778363/953, 58078175985842/953)]$ |
51376.r1 |
51376u1 |
51376.r |
51376u |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{8} \cdot 13^{8} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$5.110102674$ |
$1$ |
|
$2$ |
$80640$ |
$1.102198$ |
$1769472/3211$ |
$1.10590$ |
$3.32628$ |
$[0, 0, 0, 2704, -79092]$ |
\(y^2=x^3+2704x-79092\) |
38.2.0.a.1 |
$[(302, 5318)]$ |
51376.s1 |
51376n1 |
51376.s |
51376n |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{17} \cdot 13^{7} \cdot 19^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$2.519148073$ |
$1$ |
|
$6$ |
$161280$ |
$1.657444$ |
$214921799/150176$ |
$0.86097$ |
$3.95441$ |
$[0, 1, 0, 33744, -1075372]$ |
\(y^2=x^3+x^2+33744x-1075372\) |
104.2.0.? |
$[(316, 6422), (31, 38)]$ |
51376.t1 |
51376m1 |
51376.t |
51376m |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{25} \cdot 13^{9} \cdot 19^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$11.26778462$ |
$1$ |
|
$6$ |
$1257984$ |
$2.614525$ |
$-110931033861649/6497214464$ |
$0.94569$ |
$5.17601$ |
$[0, 1, 0, -2706760, -1799597708]$ |
\(y^2=x^3+x^2-2706760x-1799597708\) |
104.2.0.? |
$[(2526, 86528), (1932, 13642)]$ |
51376.u1 |
51376o2 |
51376.u |
51376o |
$2$ |
$5$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{13} \cdot 13^{6} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$9880$ |
$48$ |
$1$ |
$1$ |
$9$ |
$3$ |
$0$ |
$561600$ |
$1.993406$ |
$-37966934881/4952198$ |
$0.97714$ |
$4.45017$ |
$[0, 1, 0, -189336, 35039252]$ |
\(y^2=x^3+x^2-189336x+35039252\) |
5.12.0.a.2, 152.2.0.?, 260.24.0.?, 760.24.1.?, 9880.48.1.? |
$[ ]$ |
51376.u2 |
51376o1 |
51376.u |
51376o |
$2$ |
$5$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{17} \cdot 13^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$9880$ |
$48$ |
$1$ |
$1$ |
$9$ |
$3$ |
$0$ |
$112320$ |
$1.188688$ |
$-1/608$ |
$1.37833$ |
$3.46387$ |
$[0, 1, 0, -56, -166828]$ |
\(y^2=x^3+x^2-56x-166828\) |
5.12.0.a.1, 152.2.0.?, 260.24.0.?, 760.24.1.?, 9880.48.1.? |
$[ ]$ |
51376.v1 |
51376l1 |
51376.v |
51376l |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{4} \cdot 13^{3} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$5.451717244$ |
$1$ |
|
$0$ |
$19584$ |
$0.019347$ |
$-12967168/19$ |
$0.97605$ |
$2.47516$ |
$[0, -1, 0, -160, -729]$ |
\(y^2=x^3-x^2-160x-729\) |
494.2.0.? |
$[(729/4, 18603/4)]$ |
51376.w1 |
51376x3 |
51376.w |
51376x |
$3$ |
$9$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{12} \cdot 13^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$26676$ |
$1296$ |
$43$ |
$5.796263560$ |
$1$ |
|
$0$ |
$466560$ |
$2.009060$ |
$-50357871050752/19$ |
$1.10495$ |
$5.09431$ |
$[0, -1, 0, -2080277, 1155555101]$ |
\(y^2=x^3-x^2-2080277x+1155555101\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 38.2.0.a.1, 114.8.0.?, $\ldots$ |
$[(163549/14, 189111/14)]$ |
51376.w2 |
51376x2 |
51376.w |
51376x |
$3$ |
$9$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{12} \cdot 13^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$26676$ |
$1296$ |
$43$ |
$1.932087853$ |
$1$ |
|
$0$ |
$155520$ |
$1.459755$ |
$-89915392/6859$ |
$1.03310$ |
$3.88549$ |
$[0, -1, 0, -25237, 1650141]$ |
\(y^2=x^3-x^2-25237x+1650141\) |
3.12.0.a.1, 9.36.0.b.1, 38.2.0.a.1, 114.24.1.?, 156.24.0.?, $\ldots$ |
$[(621/2, 9633/2)]$ |
51376.w3 |
51376x1 |
51376.w |
51376x |
$3$ |
$9$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{12} \cdot 13^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$26676$ |
$1296$ |
$43$ |
$5.796263560$ |
$1$ |
|
$0$ |
$51840$ |
$0.910449$ |
$32768/19$ |
$1.31757$ |
$3.14418$ |
$[0, -1, 0, 1803, 701]$ |
\(y^2=x^3-x^2+1803x+701\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 38.2.0.a.1, 114.8.0.?, $\ldots$ |
$[(29/10, 34983/10)]$ |
51376.x1 |
51376h2 |
51376.x |
51376h |
$2$ |
$2$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( 2^{11} \cdot 13^{9} \cdot 19^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1976$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$294528$ |
$1.776217$ |
$2590058/361$ |
$0.87964$ |
$4.19256$ |
$[0, -1, 0, -79824, 7589984]$ |
\(y^2=x^3-x^2-79824x+7589984\) |
2.3.0.a.1, 104.6.0.?, 152.6.0.?, 988.6.0.?, 1976.12.0.? |
$[ ]$ |
51376.x2 |
51376h1 |
51376.x |
51376h |
$2$ |
$2$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{10} \cdot 13^{9} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1976$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$147264$ |
$1.429644$ |
$5324/19$ |
$0.70224$ |
$3.70965$ |
$[0, -1, 0, 8056, 629888]$ |
\(y^2=x^3-x^2+8056x+629888\) |
2.3.0.a.1, 104.6.0.?, 152.6.0.?, 494.6.0.?, 1976.12.0.? |
$[ ]$ |
51376.y1 |
51376bd1 |
51376.y |
51376bd |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{4} \cdot 13^{9} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$82368$ |
$1.089466$ |
$32000/19$ |
$0.70032$ |
$3.34017$ |
$[0, -1, 0, 3662, 12531]$ |
\(y^2=x^3-x^2+3662x+12531\) |
494.2.0.? |
$[ ]$ |
51376.z1 |
51376w2 |
51376.z |
51376w |
$2$ |
$3$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{4} \cdot 13^{9} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2964$ |
$16$ |
$0$ |
$7.076842275$ |
$1$ |
|
$0$ |
$217728$ |
$1.701759$ |
$-48795070432000/41743$ |
$0.92310$ |
$4.58019$ |
$[0, -1, 0, -324198, 71158151]$ |
\(y^2=x^3-x^2-324198x+71158151\) |
3.4.0.a.1, 156.8.0.?, 228.8.0.?, 494.2.0.?, 1482.8.0.?, $\ldots$ |
$[(16097/7, 6495/7)]$ |
51376.z2 |
51376w1 |
51376.z |
51376w |
$2$ |
$3$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{4} \cdot 13^{7} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2964$ |
$16$ |
$0$ |
$2.358947425$ |
$1$ |
|
$2$ |
$72576$ |
$1.152452$ |
$-42592000/89167$ |
$0.79553$ |
$3.43501$ |
$[0, -1, 0, -3098, 143675]$ |
\(y^2=x^3-x^2-3098x+143675\) |
3.4.0.a.1, 156.8.0.?, 228.8.0.?, 494.2.0.?, 1482.8.0.?, $\ldots$ |
$[(25, 285)]$ |
51376.ba1 |
51376bb1 |
51376.ba |
51376bb |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{4} \cdot 13^{3} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$3.035155501$ |
$1$ |
|
$0$ |
$6336$ |
$-0.193009$ |
$32000/19$ |
$0.70032$ |
$1.92137$ |
$[0, -1, 0, 22, -1]$ |
\(y^2=x^3-x^2+22x-1\) |
494.2.0.? |
$[(1/4, 39/4)]$ |
51376.bb1 |
51376c1 |
51376.bb |
51376c |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{8} \cdot 13^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$7.889457124$ |
$1$ |
|
$0$ |
$34560$ |
$0.670996$ |
$-1024/19$ |
$0.79665$ |
$2.89158$ |
$[0, -1, 0, -225, -7411]$ |
\(y^2=x^3-x^2-225x-7411\) |
38.2.0.a.1 |
$[(23969/28, 2536521/28)]$ |
51376.bc1 |
51376k2 |
51376.bc |
51376k |
$2$ |
$2$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( 2^{11} \cdot 13^{3} \cdot 19^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1976$ |
$12$ |
$0$ |
$1.895698311$ |
$1$ |
|
$3$ |
$22656$ |
$0.493742$ |
$2590058/361$ |
$0.87964$ |
$2.77375$ |
$[0, -1, 0, -472, 3600]$ |
\(y^2=x^3-x^2-472x+3600\) |
2.3.0.a.1, 104.6.0.?, 152.6.0.?, 988.6.0.?, 1976.12.0.? |
$[(0, 60)]$ |
51376.bc2 |
51376k1 |
51376.bc |
51376k |
$2$ |
$2$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{10} \cdot 13^{3} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1976$ |
$12$ |
$0$ |
$3.791396622$ |
$1$ |
|
$1$ |
$11328$ |
$0.147169$ |
$5324/19$ |
$0.70224$ |
$2.29084$ |
$[0, -1, 0, 48, 272]$ |
\(y^2=x^3-x^2+48x+272\) |
2.3.0.a.1, 104.6.0.?, 152.6.0.?, 494.6.0.?, 1976.12.0.? |
$[(64/3, 820/3)]$ |
51376.bd1 |
51376i1 |
51376.bd |
51376i |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{4} \cdot 13^{9} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$254592$ |
$1.301823$ |
$-12967168/19$ |
$0.97605$ |
$3.89397$ |
$[0, -1, 0, -27096, -1709917]$ |
\(y^2=x^3-x^2-27096x-1709917\) |
494.2.0.? |
$[ ]$ |