Learn more

Refine search


Results (1-50 of 51 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
48552.a1 48552.a \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -715660, 233200276]$ \(y^2=x^3-x^2-715660x+233200276\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.r.1, 34.6.0.a.1, 68.12.0.k.1, $\ldots$ $[ ]$
48552.a2 48552.a \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -617400, 299427516]$ \(y^2=x^3-x^2-617400x+299427516\) 2.3.0.a.1, 4.12.0.f.1, 68.24.0.j.1, 168.24.0.?, 2856.48.1.? $[ ]$
48552.b1 48552.b \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $13.85069228$ $[0, -1, 0, -88632, -10144116]$ \(y^2=x^3-x^2-88632x-10144116\) 24.2.0.b.1 $[(16992205/113, 68087300064/113)]$
48552.c1 48552.c \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $1.460575003$ $[0, -1, 0, -25817, -1599219]$ \(y^2=x^3-x^2-25817x-1599219\) 102.2.0.? $[(295, 4046)]$
48552.d1 48552.d \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -232, -12116]$ \(y^2=x^3-x^2-232x-12116\) 24.2.0.b.1 $[ ]$
48552.e1 48552.e \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -77588504, 261386156748]$ \(y^2=x^3-x^2-77588504x+261386156748\) 2.3.0.a.1, 8.6.0.b.1, 476.6.0.?, 952.12.0.? $[ ]$
48552.e2 48552.e \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1743344, 9246506844]$ \(y^2=x^3-x^2-1743344x+9246506844\) 2.3.0.a.1, 8.6.0.c.1, 238.6.0.?, 952.12.0.? $[ ]$
48552.f1 48552.f \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -44024, 3565500]$ \(y^2=x^3-x^2-44024x+3565500\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 28.12.0.h.1, 68.12.0-4.c.1.2, $\ldots$ $[ ]$
48552.f2 48552.f \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -3564, 21204]$ \(y^2=x^3-x^2-3564x+21204\) 2.6.0.a.1, 12.12.0.b.1, 28.12.0.a.1, 68.12.0-2.a.1.1, 84.24.0.?, $\ldots$ $[ ]$
48552.f3 48552.f \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -2119, -36596]$ \(y^2=x^3-x^2-2119x-36596\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 42.6.0.a.1, 56.12.0.ba.1, $\ldots$ $[ ]$
48552.f4 48552.f \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 13776, 152988]$ \(y^2=x^3-x^2+13776x+152988\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 56.12.0.ba.1, $\ldots$ $[ ]$
48552.g1 48552.g \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -2818424, -1820158596]$ \(y^2=x^3-x^2-2818424x-1820158596\) 2.3.0.a.1, 84.6.0.?, 204.6.0.?, 476.6.0.?, 1428.12.0.? $[ ]$
48552.g2 48552.g \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -165404, -32023116]$ \(y^2=x^3-x^2-165404x-32023116\) 2.3.0.a.1, 84.6.0.?, 204.6.0.?, 238.6.0.?, 1428.12.0.? $[ ]$
48552.h1 48552.h \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $5.168918021$ $[0, -1, 0, -61976, 6649164]$ \(y^2=x^3-x^2-61976x+6649164\) 24.2.0.b.1 $[(433, 7798)]$
48552.i1 48552.i \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $2.187148368$ $[0, -1, 0, -96, -4244436]$ \(y^2=x^3-x^2-96x-4244436\) 2856.2.0.? $[(653/2, 2023/2)]$
48552.j1 48552.j \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $1.301019365$ $[0, -1, 0, -28, -539]$ \(y^2=x^3-x^2-28x-539\) 14.2.0.a.1 $[(10, 9)]$
48552.k1 48552.k \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -14059368, -20299636755]$ \(y^2=x^3-x^2-14059368x-20299636755\) 14.2.0.a.1 $[ ]$
48552.l1 48552.l \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.509762488$ $[0, -1, 0, -28, 73]$ \(y^2=x^3-x^2-28x+73\) 14.2.0.a.1 $[(4, 3)]$
48552.m1 48552.m \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 34295, 83329789]$ \(y^2=x^3-x^2+34295x+83329789\) 102.2.0.? $[ ]$
48552.n1 48552.n \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -8120, 284364]$ \(y^2=x^3-x^2-8120x+284364\) 2856.2.0.? $[ ]$
48552.o1 48552.o \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 196135, 780240573]$ \(y^2=x^3-x^2+196135x+780240573\) 102.2.0.? $[ ]$
48552.p1 48552.p \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $4.308141333$ $[0, -1, 0, -99512, -11430132]$ \(y^2=x^3-x^2-99512x-11430132\) 2.3.0.a.1, 8.6.0.b.1, 476.6.0.?, 952.12.0.? $[(1469/2, 9537/2)]$
48552.p2 48552.p \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $8.616282666$ $[0, -1, 0, 4528, -734820]$ \(y^2=x^3-x^2+4528x-734820\) 2.3.0.a.1, 8.6.0.c.1, 238.6.0.?, 952.12.0.? $[(15562, 1941280)]$
48552.q1 48552.q \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $13.93268669$ $[0, -1, 0, -157312, -21774020]$ \(y^2=x^3-x^2-157312x-21774020\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 42.6.0.a.1, 68.12.0-4.c.1.1, $\ldots$ $[(-722331/65, 84430672/65)]$
48552.q2 48552.q \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $6.966343345$ $[0, -1, 0, -35932, 2259220]$ \(y^2=x^3-x^2-35932x+2259220\) 2.6.0.a.1, 4.12.0-2.a.1.1, 68.24.0-68.a.1.2, 84.24.0.?, 1428.48.0.? $[(1/5, 187824/5)]$
48552.q3 48552.q \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $1$ $\Z/4\Z$ $13.93268669$ $[0, -1, 0, -34487, 2476548]$ \(y^2=x^3-x^2-34487x+2476548\) 2.3.0.a.1, 4.12.0-4.c.1.1, 136.24.0.?, 168.24.0.?, 714.6.0.?, $\ldots$ $[(3077281/160, 947152271/160)]$
48552.q4 48552.q \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $3.483171672$ $[0, -1, 0, 62328, 12360348]$ \(y^2=x^3-x^2+62328x+12360348\) 2.3.0.a.1, 4.12.0-4.c.1.2, 68.24.0-68.h.1.1, 168.24.0.?, 2856.48.0.? $[(941, 30056)]$
48552.r1 48552.r \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $29.42515016$ $[0, -1, 0, -52415185632, 4618866912554412]$ \(y^2=x^3-x^2-52415185632x+4618866912554412\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 28.12.0-4.c.1.1, 56.24.0-8.p.1.5, $\ldots$ $[(2208461725907501/129139, 333102455480756082940/129139)]$
48552.r2 48552.r \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $7.356287540$ $[0, -1, 0, -3284376432, 71780641472268]$ \(y^2=x^3-x^2-3284376432x+71780641472268\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 56.24.0-8.k.1.3, 68.12.0-4.c.1.1, $\ldots$ $[(30782301/26, 71698856481/26)]$
48552.r3 48552.r \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $14.71257508$ $[0, -1, 0, -3275949192, 72170610317820]$ \(y^2=x^3-x^2-3275949192x+72170610317820\) 2.6.0.a.1, 8.12.0.a.1, 28.12.0-2.a.1.1, 56.24.0-8.a.1.3, 68.12.0-2.a.1.1, $\ldots$ $[(301818302/89, 1150996115360/89)]$
48552.r4 48552.r \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $7.356287540$ $[0, -1, 0, -204220212, 1133805926340]$ \(y^2=x^3-x^2-204220212x+1133805926340\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 28.12.0-4.c.1.2, 56.24.0-8.p.1.6, $\ldots$ $[(-676, 1127630)]$
48552.s1 48552.s \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -1165344, 483816816]$ \(y^2=x^3+x^2-1165344x+483816816\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 42.6.0.a.1, 56.12.0.ba.1, $\ldots$ $[ ]$
48552.s2 48552.s \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -113384, -1800288]$ \(y^2=x^3+x^2-113384x-1800288\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 28.12.0.h.1, 68.12.0-4.c.1.1, $\ldots$ $[ ]$
48552.s3 48552.s \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -72924, 7521696]$ \(y^2=x^3+x^2-72924x+7521696\) 2.6.0.a.1, 12.12.0.b.1, 28.12.0.a.1, 68.12.0-2.a.1.1, 84.24.0.?, $\ldots$ $[ ]$
48552.s4 48552.s \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -2119, 242942]$ \(y^2=x^3+x^2-2119x+242942\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 56.12.0.ba.1, $\ldots$ $[ ]$
48552.t1 48552.t \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $19.58828598$ $[0, 1, 0, -633584, -194288160]$ \(y^2=x^3+x^2-633584x-194288160\) 2.3.0.a.1, 4.12.0-4.c.1.2, 168.24.0.?, 408.24.0.?, 952.24.0.?, $\ldots$ $[(226223139/455, 1928988398238/455)]$
48552.t2 48552.t \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $19.58828598$ $[0, 1, 0, -286784, 57294432]$ \(y^2=x^3+x^2-286784x+57294432\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 168.24.0.?, 408.24.0.?, $\ldots$ $[(318281301/574, 4941334894665/574)]$
48552.t3 48552.t \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $9.794142990$ $[0, 1, 0, -44024, -2327424]$ \(y^2=x^3+x^2-44024x-2327424\) 2.6.0.a.1, 4.12.0-2.a.1.1, 168.24.0.?, 408.24.0.?, 476.24.0.?, $\ldots$ $[(45168/7, 9338160/7)]$
48552.t4 48552.t \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $1$ $\Z/4\Z$ $4.897071495$ $[0, 1, 0, 7996, -246624]$ \(y^2=x^3+x^2+7996x-246624\) 2.3.0.a.1, 4.12.0-4.c.1.1, 168.24.0.?, 238.6.0.?, 408.24.0.?, $\ldots$ $[(910, 27594)]$
48552.u1 48552.u \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -2346776, 1382999856]$ \(y^2=x^3+x^2-2346776x+1382999856\) 2856.2.0.? $[ ]$
48552.v1 48552.v \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -8188, 309701]$ \(y^2=x^3+x^2-8188x+309701\) 14.2.0.a.1 $[ ]$
48552.w1 48552.w \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $3.943571803$ $[0, 1, 0, -48648, -4148991]$ \(y^2=x^3+x^2-48648x-4148991\) 14.2.0.a.1 $[(708, 17799)]$
48552.x1 48552.x \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -8188, -2697055]$ \(y^2=x^3+x^2-8188x-2697055\) 14.2.0.a.1 $[ ]$
48552.y1 48552.y \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.310138039$ $[0, 1, 0, -27490065, 55467695331]$ \(y^2=x^3+x^2-27490065x+55467695331\) 102.2.0.? $[(2085, 84966)]$
48552.z1 48552.z \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -17911160, 32559875952]$ \(y^2=x^3+x^2-17911160x+32559875952\) 24.2.0.b.1 $[ ]$
48552.ba1 48552.ba \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -9752, -373920]$ \(y^2=x^3+x^2-9752x-373920\) 2.3.0.a.1, 84.6.0.?, 204.6.0.?, 476.6.0.?, 1428.12.0.? $[ ]$
48552.ba2 48552.ba \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -572, -6720]$ \(y^2=x^3+x^2-572x-6720\) 2.3.0.a.1, 84.6.0.?, 204.6.0.?, 238.6.0.?, 1428.12.0.? $[ ]$
48552.bb1 48552.bb \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $1.673909928$ $[0, 1, 0, -67144, -59928592]$ \(y^2=x^3+x^2-67144x-59928592\) 24.2.0.b.1 $[(1829/2, 18207/2)]$
48552.bc1 48552.bc \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -25614744, -49991730192]$ \(y^2=x^3+x^2-25614744x-49991730192\) 24.2.0.b.1 $[ ]$
48552.bd1 48552.bd \( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -2476, 46592]$ \(y^2=x^3+x^2-2476x+46592\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.r.1, 34.6.0.a.1, 68.12.0.k.1, $\ldots$ $[ ]$
Next   displayed columns for results