Learn more

Refine search


Results (35 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
479408.a1 479408.a \( 2^{4} \cdot 19^{2} \cdot 83 \) $1$ $\mathsf{trivial}$ $1.356327878$ $[0, 0, 0, -2527, 68590]$ \(y^2=x^3-2527x+68590\) 166.2.0.? $[(133, 1444)]$
479408.b1 479408.b \( 2^{4} \cdot 19^{2} \cdot 83 \) $2$ $\mathsf{trivial}$ $4.850493384$ $[0, 0, 0, -247, -1463]$ \(y^2=x^3-247x-1463\) 2.2.0.a.1, 38.6.0.a.1, 6308.12.0.? $[(-8, 1), (73/2, 83/2)]$
479408.c1 479408.c \( 2^{4} \cdot 19^{2} \cdot 83 \) $2$ $\mathsf{trivial}$ $2.252584788$ $[0, 1, 0, -13344, 590836]$ \(y^2=x^3+x^2-13344x+590836\) 664.2.0.? $[(26, 512), (1674/5, 5632/5)]$
479408.d1 479408.d \( 2^{4} \cdot 19^{2} \cdot 83 \) $2$ $\Z/2\Z$ $2.793793038$ $[0, 1, 0, -424, 2292]$ \(y^2=x^3+x^2-424x+2292\) 2.3.0.a.1, 76.6.0.?, 332.6.0.?, 3154.6.0.?, 6308.12.0.? $[(-2, 56), (22, 64)]$
479408.d2 479408.d \( 2^{4} \cdot 19^{2} \cdot 83 \) $2$ $\Z/2\Z$ $2.793793038$ $[0, 1, 0, 1096, 16276]$ \(y^2=x^3+x^2+1096x+16276\) 2.3.0.a.1, 38.6.0.b.1, 332.6.0.?, 6308.12.0.? $[(6, 152), (734, 19920)]$
479408.e1 479408.e \( 2^{4} \cdot 19^{2} \cdot 83 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -933305, 348625027]$ \(y^2=x^3+x^2-933305x+348625027\) 38.2.0.a.1 $[ ]$
479408.f1 479408.f \( 2^{4} \cdot 19^{2} \cdot 83 \) $2$ $\mathsf{trivial}$ $2.351752958$ $[0, 1, 0, 26955, 873727]$ \(y^2=x^3+x^2+26955x+873727\) 38.2.0.a.1 $[(-13, 722), (747, 20938)]$
479408.g1 479408.g \( 2^{4} \cdot 19^{2} \cdot 83 \) $1$ $\mathsf{trivial}$ $7.716212742$ $[0, 1, 0, -1893565, -1003558233]$ \(y^2=x^3+x^2-1893565x-1003558233\) 38.2.0.a.1 $[(547319/17, 230775026/17)]$
479408.h1 479408.h \( 2^{4} \cdot 19^{2} \cdot 83 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 724768, -357175820]$ \(y^2=x^3+x^2+724768x-357175820\) 664.2.0.? $[ ]$
479408.i1 479408.i \( 2^{4} \cdot 19^{2} \cdot 83 \) $1$ $\mathsf{trivial}$ $10.25020489$ $[0, 1, 0, -364369, -179858757]$ \(y^2=x^3+x^2-364369x-179858757\) 38.2.0.a.1 $[(11637694/87, 35443801997/87)]$
479408.j1 479408.j \( 2^{4} \cdot 19^{2} \cdot 83 \) $1$ $\mathsf{trivial}$ $2.498997301$ $[0, -1, 0, -372672, -87417701]$ \(y^2=x^3-x^2-372672x-87417701\) 2.2.0.a.1, 38.6.0.a.1, 332.4.0.?, 6308.12.0.? $[(4213/2, 209741/2)]$
479408.k1 479408.k \( 2^{4} \cdot 19^{2} \cdot 83 \) $2$ $\mathsf{trivial}$ $2.665143943$ $[0, -1, 0, -37664, 2929408]$ \(y^2=x^3-x^2-37664x+2929408\) 166.2.0.? $[(146, 722), (592/3, 23104/3)]$
479408.l1 479408.l \( 2^{4} \cdot 19^{2} \cdot 83 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 5656, -102992]$ \(y^2=x^3-x^2+5656x-102992\) 166.2.0.? $[ ]$
479408.m1 479408.m \( 2^{4} \cdot 19^{2} \cdot 83 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -18110768, -29666921264]$ \(y^2=x^3-x^2-18110768x-29666921264\) 166.2.0.? $[ ]$
479408.n1 479408.n \( 2^{4} \cdot 19^{2} \cdot 83 \) $1$ $\mathsf{trivial}$ $3.671777739$ $[0, -1, 0, -11367288, 14755659376]$ \(y^2=x^3-x^2-11367288x+14755659376\) 166.2.0.? $[(26812/3, 2310400/3)]$
479408.o1 479408.o \( 2^{4} \cdot 19^{2} \cdot 83 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -1203, 20470]$ \(y^2=x^3-x^2-1203x+20470\) 166.2.0.? $[ ]$
479408.p1 479408.p \( 2^{4} \cdot 19^{2} \cdot 83 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -38835417, 93164495488]$ \(y^2=x^3-x^2-38835417x+93164495488\) 166.2.0.? $[ ]$
479408.q1 479408.q \( 2^{4} \cdot 19^{2} \cdot 83 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -10270811, 12668614154]$ \(y^2=x^3-10270811x+12668614154\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 76.12.0.?, 152.24.0.?, $\ldots$ $[ ]$
479408.q2 479408.q \( 2^{4} \cdot 19^{2} \cdot 83 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -682651, 171406410]$ \(y^2=x^3-682651x+171406410\) 2.6.0.a.1, 4.12.0-2.a.1.1, 76.24.0.?, 332.24.0.?, 6308.48.0.? $[ ]$
479408.q3 479408.q \( 2^{4} \cdot 19^{2} \cdot 83 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -220571, -37546166]$ \(y^2=x^3-220571x-37546166\) 2.3.0.a.1, 4.12.0-4.c.1.2, 152.24.0.?, 664.24.0.?, 3154.6.0.?, $\ldots$ $[ ]$
479408.q4 479408.q \( 2^{4} \cdot 19^{2} \cdot 83 \) $0$ $\Z/4\Z$ $1$ $[0, 0, 0, 1512229, 1047163530]$ \(y^2=x^3+1512229x+1047163530\) 2.3.0.a.1, 4.12.0-4.c.1.1, 38.6.0.b.1, 76.24.0.?, 664.24.0.?, $\ldots$ $[ ]$
479408.r1 479408.r \( 2^{4} \cdot 19^{2} \cdot 83 \) $2$ $\mathsf{trivial}$ $3.303547785$ $[0, 1, 0, -1032, 12419]$ \(y^2=x^3+x^2-1032x+12419\) 2.2.0.a.1, 38.6.0.a.1, 6308.12.0.? $[(-35, 83), (109/2, 581/2)]$
479408.s1 479408.s \( 2^{4} \cdot 19^{2} \cdot 83 \) $1$ $\mathsf{trivial}$ $1.859347883$ $[0, 1, 0, -3369, 239450]$ \(y^2=x^3+x^2-3369x+239450\) 166.2.0.? $[(82, 722)]$
479408.t1 479408.t \( 2^{4} \cdot 19^{2} \cdot 83 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 241, 12020]$ \(y^2=x^3+x^2+241x+12020\) 166.2.0.? $[ ]$
479408.u1 479408.u \( 2^{4} \cdot 19^{2} \cdot 83 \) $1$ $\mathsf{trivial}$ $4.501065227$ $[0, 1, 0, 90852, 13831100]$ \(y^2=x^3+x^2+90852x+13831100\) 166.2.0.? $[(-782/3, 62092/3)]$
479408.v1 479408.v \( 2^{4} \cdot 19^{2} \cdot 83 \) $1$ $\mathsf{trivial}$ $2.888615576$ $[0, 1, 0, -10214976, 12863695412]$ \(y^2=x^3+x^2-10214976x+12863695412\) 152.2.0.? $[(6997/2, 149815/2)]$
479408.w1 479408.w \( 2^{4} \cdot 19^{2} \cdot 83 \) $1$ $\mathsf{trivial}$ $18.02969424$ $[0, -1, 0, 8174003, 9524402961]$ \(y^2=x^3-x^2+8174003x+9524402961\) 38.2.0.a.1 $[(20918438169/1201, 3088236723615546/1201)]$
479408.x1 479408.x \( 2^{4} \cdot 19^{2} \cdot 83 \) $1$ $\mathsf{trivial}$ $53.61178986$ $[0, -1, 0, -4817304, -4081447696]$ \(y^2=x^3-x^2-4817304x-4081447696\) 664.2.0.? $[(145326965560341928925645/6067751777, 43770221724206989200785796761023674/6067751777)]$
479408.y1 479408.y \( 2^{4} \cdot 19^{2} \cdot 83 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -153184, -16639680]$ \(y^2=x^3-x^2-153184x-16639680\) 2.3.0.a.1, 76.6.0.?, 332.6.0.?, 3154.6.0.?, 6308.12.0.? $[ ]$
479408.y2 479408.y \( 2^{4} \cdot 19^{2} \cdot 83 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 395536, -109263616]$ \(y^2=x^3-x^2+395536x-109263616\) 2.3.0.a.1, 38.6.0.b.1, 332.6.0.?, 6308.12.0.? $[ ]$
479408.z1 479408.z \( 2^{4} \cdot 19^{2} \cdot 83 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 171355, -142647091]$ \(y^2=x^3-x^2+171355x-142647091\) 38.2.0.a.1 $[ ]$
479408.ba1 479408.ba \( 2^{4} \cdot 19^{2} \cdot 83 \) $1$ $\mathsf{trivial}$ $16.52102804$ $[0, -1, 0, 2008, 51440]$ \(y^2=x^3-x^2+2008x+51440\) 664.2.0.? $[(14031409/184, 52821734775/184)]$
479408.bb1 479408.bb \( 2^{4} \cdot 19^{2} \cdot 83 \) $1$ $\mathsf{trivial}$ $9.555383103$ $[0, 0, 0, 1805, -7311694]$ \(y^2=x^3+1805x-7311694\) 166.2.0.? $[(1325497/39, 1519417232/39)]$
479408.bc1 479408.bc \( 2^{4} \cdot 19^{2} \cdot 83 \) $1$ $\mathsf{trivial}$ $5.668181976$ $[0, 0, 0, -89167, 10034717]$ \(y^2=x^3-89167x+10034717\) 2.2.0.a.1, 38.6.0.a.1, 332.4.0.?, 6308.12.0.? $[(173641/30, 3086189/30)]$
479408.bd1 479408.bd \( 2^{4} \cdot 19^{2} \cdot 83 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 9514877, -5564089390]$ \(y^2=x^3+9514877x-5564089390\) 166.2.0.? $[ ]$
  displayed columns for results