| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 479408.a1 |
479408a1 |
479408.a |
479408a |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{8} \cdot 19^{6} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1.356327878$ |
$1$ |
|
$2$ |
$2211840$ |
$1.005833$ |
$-148176/83$ |
$0.66708$ |
$2.73655$ |
$[0, 0, 0, -2527, 68590]$ |
\(y^2=x^3-2527x+68590\) |
166.2.0.? |
$[(133, 1444)]$ |
| 479408.b1 |
479408b1 |
479408.b |
479408b |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( 2^{4} \cdot 19^{2} \cdot 83^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$6308$ |
$12$ |
$0$ |
$4.850493384$ |
$1$ |
|
$2$ |
$188928$ |
$0.243169$ |
$288527616/6889$ |
$0.74861$ |
$2.15146$ |
$[0, 0, 0, -247, -1463]$ |
\(y^2=x^3-247x-1463\) |
2.2.0.a.1, 38.6.0.a.1, 6308.12.0.? |
$[(-8, 1), (73/2, 83/2)]$ |
| 479408.c1 |
479408c1 |
479408.c |
479408c |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{25} \cdot 19^{2} \cdot 83 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$664$ |
$2$ |
$0$ |
$2.252584788$ |
$1$ |
|
$10$ |
$696384$ |
$1.161875$ |
$-177724461817/679936$ |
$0.93144$ |
$3.06696$ |
$[0, 1, 0, -13344, 590836]$ |
\(y^2=x^3+x^2-13344x+590836\) |
664.2.0.? |
$[(26, 512), (1674/5, 5632/5)]$ |
| 479408.d1 |
479408d1 |
479408.d |
479408d |
$2$ |
$2$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( 2^{12} \cdot 19^{3} \cdot 83 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$6308$ |
$12$ |
$0$ |
$2.793793038$ |
$1$ |
|
$13$ |
$259840$ |
$0.504973$ |
$300763/83$ |
$0.70586$ |
$2.27557$ |
$[0, 1, 0, -424, 2292]$ |
\(y^2=x^3+x^2-424x+2292\) |
2.3.0.a.1, 76.6.0.?, 332.6.0.?, 3154.6.0.?, 6308.12.0.? |
$[(-2, 56), (22, 64)]$ |
| 479408.d2 |
479408d2 |
479408.d |
479408d |
$2$ |
$2$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{12} \cdot 19^{3} \cdot 83^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$6308$ |
$12$ |
$0$ |
$2.793793038$ |
$1$ |
|
$13$ |
$519680$ |
$0.851547$ |
$5177717/6889$ |
$0.78719$ |
$2.51314$ |
$[0, 1, 0, 1096, 16276]$ |
\(y^2=x^3+x^2+1096x+16276\) |
2.3.0.a.1, 38.6.0.b.1, 332.6.0.?, 6308.12.0.? |
$[(6, 152), (734, 19920)]$ |
| 479408.e1 |
479408e1 |
479408.e |
479408e |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{8} \cdot 19^{9} \cdot 83^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9538560$ |
$2.244453$ |
$-7465061395456/47251651$ |
$0.86501$ |
$4.04149$ |
$[0, 1, 0, -933305, 348625027]$ |
\(y^2=x^3+x^2-933305x+348625027\) |
38.2.0.a.1 |
$[ ]$ |
| 479408.f1 |
479408f1 |
479408.f |
479408f |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{8} \cdot 19^{7} \cdot 83^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$2.351752958$ |
$1$ |
|
$10$ |
$1589760$ |
$1.604492$ |
$179830784/130891$ |
$0.84483$ |
$3.22770$ |
$[0, 1, 0, 26955, 873727]$ |
\(y^2=x^3+x^2+26955x+873727\) |
38.2.0.a.1 |
$[(-13, 722), (747, 20938)]$ |
| 479408.g1 |
479408g1 |
479408.g |
479408g |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{8} \cdot 19^{7} \cdot 83^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$7.716212742$ |
$1$ |
|
$0$ |
$5391360$ |
$2.164948$ |
$-62345200132096/130891$ |
$0.90384$ |
$4.20292$ |
$[0, 1, 0, -1893565, -1003558233]$ |
\(y^2=x^3+x^2-1893565x-1003558233\) |
38.2.0.a.1 |
$[(547319/17, 230775026/17)]$ |
| 479408.h1 |
479408h1 |
479408.h |
479408h |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{13} \cdot 19^{8} \cdot 83^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$664$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$15266880$ |
$2.503216$ |
$605245247/1143574$ |
$0.89844$ |
$4.04516$ |
$[0, 1, 0, 724768, -357175820]$ |
\(y^2=x^3+x^2+724768x-357175820\) |
664.2.0.? |
$[ ]$ |
| 479408.i1 |
479408i1 |
479408.i |
479408i |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{8} \cdot 19^{7} \cdot 83^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$10.25020489$ |
$1$ |
|
$0$ |
$11335680$ |
$2.341927$ |
$-444209247232/901708099$ |
$0.86719$ |
$3.94006$ |
$[0, 1, 0, -364369, -179858757]$ |
\(y^2=x^3+x^2-364369x-179858757\) |
38.2.0.a.1 |
$[(11637694/87, 35443801997/87)]$ |
| 479408.j1 |
479408j1 |
479408.j |
479408j |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( 2^{4} \cdot 19^{8} \cdot 83^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$6308$ |
$12$ |
$0$ |
$2.498997301$ |
$1$ |
|
$0$ |
$3633408$ |
$1.904171$ |
$21064753408/6889$ |
$0.81531$ |
$3.83011$ |
$[0, -1, 0, -372672, -87417701]$ |
\(y^2=x^3-x^2-372672x-87417701\) |
2.2.0.a.1, 38.6.0.a.1, 332.4.0.?, 6308.12.0.? |
$[(4213/2, 209741/2)]$ |
| 479408.k1 |
479408k1 |
479408.k |
479408k |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{16} \cdot 19^{6} \cdot 83 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$2.665143943$ |
$1$ |
|
$8$ |
$1368576$ |
$1.530304$ |
$-30664297/1328$ |
$0.83983$ |
$3.30995$ |
$[0, -1, 0, -37664, 2929408]$ |
\(y^2=x^3-x^2-37664x+2929408\) |
166.2.0.? |
$[(146, 722), (592/3, 23104/3)]$ |
| 479408.l1 |
479408l1 |
479408.l |
479408l |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{12} \cdot 19^{6} \cdot 83 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$912384$ |
$1.221498$ |
$103823/83$ |
$0.77332$ |
$2.86957$ |
$[0, -1, 0, 5656, -102992]$ |
\(y^2=x^3-x^2+5656x-102992\) |
166.2.0.? |
$[ ]$ |
| 479408.m1 |
479408m1 |
479408.m |
479408m |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{10} \cdot 19^{12} \cdot 83 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$18109440$ |
$2.870655$ |
$-13636809560150500/3904808123$ |
$0.91802$ |
$4.72085$ |
$[0, -1, 0, -18110768, -29666921264]$ |
\(y^2=x^3-x^2-18110768x-29666921264\) |
166.2.0.? |
$[ ]$ |
| 479408.n1 |
479408n1 |
479408.n |
479408n |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{22} \cdot 19^{8} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$3.671777739$ |
$1$ |
|
$0$ |
$10368000$ |
$2.690044$ |
$-842971295994625/30682112$ |
$0.90933$ |
$4.61399$ |
$[0, -1, 0, -11367288, 14755659376]$ |
\(y^2=x^3-x^2-11367288x+14755659376\) |
166.2.0.? |
$[(26812/3, 2310400/3)]$ |
| 479408.o1 |
479408o1 |
479408.o |
479408o |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{4} \cdot 19^{6} \cdot 83 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$221184$ |
$0.784133$ |
$-256000/83$ |
$0.71692$ |
$2.54864$ |
$[0, -1, 0, -1203, 20470]$ |
\(y^2=x^3-x^2-1203x+20470\) |
166.2.0.? |
$[ ]$ |
| 479408.p1 |
479408p1 |
479408.p |
479408p |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{4} \cdot 19^{8} \cdot 83^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$20839680$ |
$2.819187$ |
$-8605300751925035008/206415107$ |
$0.98175$ |
$4.89577$ |
$[0, -1, 0, -38835417, 93164495488]$ |
\(y^2=x^3-x^2-38835417x+93164495488\) |
166.2.0.? |
$[ ]$ |
| 479408.q1 |
479408q3 |
479408.q |
479408q |
$4$ |
$4$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( 2^{14} \cdot 19^{10} \cdot 83 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$12616$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$11059200$ |
$2.683968$ |
$621808094281977/43266572$ |
$0.98612$ |
$4.59072$ |
$[0, 0, 0, -10270811, 12668614154]$ |
\(y^2=x^3-10270811x+12668614154\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 76.12.0.?, 152.24.0.?, $\ldots$ |
$[ ]$ |
| 479408.q2 |
479408q2 |
479408.q |
479408q |
$4$ |
$4$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( 2^{16} \cdot 19^{8} \cdot 83^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$6308$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$5529600$ |
$2.337391$ |
$182573756217/39790864$ |
$0.98034$ |
$3.96893$ |
$[0, 0, 0, -682651, 171406410]$ |
\(y^2=x^3-682651x+171406410\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 76.24.0.?, 332.24.0.?, 6308.48.0.? |
$[ ]$ |
| 479408.q3 |
479408q1 |
479408.q |
479408q |
$4$ |
$4$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( 2^{20} \cdot 19^{7} \cdot 83 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$12616$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2764800$ |
$1.990820$ |
$6158676537/403712$ |
$0.81948$ |
$3.70982$ |
$[0, 0, 0, -220571, -37546166]$ |
\(y^2=x^3-220571x-37546166\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 152.24.0.?, 664.24.0.?, 3154.6.0.?, $\ldots$ |
$[ ]$ |
| 479408.q4 |
479408q4 |
479408.q |
479408q |
$4$ |
$4$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{14} \cdot 19^{7} \cdot 83^{4} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$12616$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$11059200$ |
$2.683968$ |
$1984699888263/3606832396$ |
$0.94665$ |
$4.20952$ |
$[0, 0, 0, 1512229, 1047163530]$ |
\(y^2=x^3+1512229x+1047163530\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 38.6.0.b.1, 76.24.0.?, 664.24.0.?, $\ldots$ |
$[ ]$ |
| 479408.r1 |
479408r1 |
479408.r |
479408r |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( 2^{4} \cdot 19^{2} \cdot 83^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$6308$ |
$12$ |
$0$ |
$3.303547785$ |
$1$ |
|
$4$ |
$191232$ |
$0.431952$ |
$21064753408/6889$ |
$0.81531$ |
$2.47948$ |
$[0, 1, 0, -1032, 12419]$ |
\(y^2=x^3+x^2-1032x+12419\) |
2.2.0.a.1, 38.6.0.a.1, 6308.12.0.? |
$[(-35, 83), (109/2, 581/2)]$ |
| 479408.s1 |
479408s1 |
479408.s |
479408s |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{4} \cdot 19^{8} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1.859347883$ |
$1$ |
|
$2$ |
$725760$ |
$1.246399$ |
$-5619712/29963$ |
$0.76342$ |
$2.92843$ |
$[0, 1, 0, -3369, 239450]$ |
\(y^2=x^3+x^2-3369x+239450\) |
166.2.0.? |
$[(82, 722)]$ |
| 479408.t1 |
479408t1 |
479408.t |
479408t |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{4} \cdot 19^{6} \cdot 83 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$228096$ |
$0.751348$ |
$2048/83$ |
$0.76681$ |
$2.46924$ |
$[0, 1, 0, 241, 12020]$ |
\(y^2=x^3+x^2+241x+12020\) |
166.2.0.? |
$[ ]$ |
| 479408.u1 |
479408u1 |
479408.u |
479408u |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{8} \cdot 19^{10} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$4.501065227$ |
$1$ |
|
$0$ |
$3594240$ |
$1.969269$ |
$6885902000/10816643$ |
$0.80329$ |
$3.54759$ |
$[0, 1, 0, 90852, 13831100]$ |
\(y^2=x^3+x^2+90852x+13831100\) |
166.2.0.? |
$[(-782/3, 62092/3)]$ |
| 479408.v1 |
479408v1 |
479408.v |
479408v |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{29} \cdot 19^{7} \cdot 83^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$2.888615576$ |
$1$ |
|
$0$ |
$31726080$ |
$2.909565$ |
$-611722215487369/17156145152$ |
$0.90794$ |
$4.59309$ |
$[0, 1, 0, -10214976, 12863695412]$ |
\(y^2=x^3+x^2-10214976x+12863695412\) |
152.2.0.? |
$[(6997/2, 149815/2)]$ |
| 479408.w1 |
479408w1 |
479408.w |
479408w |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{8} \cdot 19^{13} \cdot 83^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$18.02969424$ |
$1$ |
|
$0$ |
$42094080$ |
$3.074493$ |
$5014948370604032/6157882409971$ |
$0.95589$ |
$4.54714$ |
$[0, -1, 0, 8174003, 9524402961]$ |
\(y^2=x^3-x^2+8174003x+9524402961\) |
38.2.0.a.1 |
$[(20918438169/1201, 3088236723615546/1201)]$ |
| 479408.x1 |
479408x1 |
479408.x |
479408x |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{25} \cdot 19^{8} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$664$ |
$2$ |
$0$ |
$53.61178986$ |
$1$ |
|
$0$ |
$13231296$ |
$2.634094$ |
$-177724461817/679936$ |
$0.93144$ |
$4.41758$ |
$[0, -1, 0, -4817304, -4081447696]$ |
\(y^2=x^3-x^2-4817304x-4081447696\) |
664.2.0.? |
$[(145326965560341928925645/6067751777, 43770221724206989200785796761023674/6067751777)]$ |
| 479408.y1 |
479408y1 |
479408.y |
479408y |
$2$ |
$2$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( 2^{12} \cdot 19^{9} \cdot 83 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$6308$ |
$12$ |
$0$ |
$1$ |
$9$ |
$3$ |
$1$ |
$4936960$ |
$1.977194$ |
$300763/83$ |
$0.70586$ |
$3.62620$ |
$[0, -1, 0, -153184, -16639680]$ |
\(y^2=x^3-x^2-153184x-16639680\) |
2.3.0.a.1, 76.6.0.?, 332.6.0.?, 3154.6.0.?, 6308.12.0.? |
$[ ]$ |
| 479408.y2 |
479408y2 |
479408.y |
479408y |
$2$ |
$2$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{12} \cdot 19^{9} \cdot 83^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$6308$ |
$12$ |
$0$ |
$1$ |
$9$ |
$3$ |
$1$ |
$9873920$ |
$2.323765$ |
$5177717/6889$ |
$0.78719$ |
$3.86377$ |
$[0, -1, 0, 395536, -109263616]$ |
\(y^2=x^3-x^2+395536x-109263616\) |
2.3.0.a.1, 38.6.0.b.1, 332.6.0.?, 6308.12.0.? |
$[ ]$ |
| 479408.z1 |
479408z1 |
479408.z |
479408z |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{12} \cdot 19^{9} \cdot 83^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10368000$ |
$2.318504$ |
$2887553024/47251651$ |
$0.86967$ |
$3.90466$ |
$[0, -1, 0, 171355, -142647091]$ |
\(y^2=x^3-x^2+171355x-142647091\) |
38.2.0.a.1 |
$[ ]$ |
| 479408.ba1 |
479408ba1 |
479408.ba |
479408ba |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{13} \cdot 19^{2} \cdot 83^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$664$ |
$2$ |
$0$ |
$16.52102804$ |
$1$ |
|
$0$ |
$803520$ |
$1.030996$ |
$605245247/1143574$ |
$0.89844$ |
$2.69453$ |
$[0, -1, 0, 2008, 51440]$ |
\(y^2=x^3-x^2+2008x+51440\) |
664.2.0.? |
$[(14031409/184, 52821734775/184)]$ |
| 479408.bb1 |
479408bb1 |
479408.bb |
479408bb |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{14} \cdot 19^{8} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$9.555383103$ |
$1$ |
|
$0$ |
$4561920$ |
$1.818762$ |
$3375/119852$ |
$0.93017$ |
$3.45046$ |
$[0, 0, 0, 1805, -7311694]$ |
\(y^2=x^3+1805x-7311694\) |
166.2.0.? |
$[(1325497/39, 1519417232/39)]$ |
| 479408.bc1 |
479408bc1 |
479408.bc |
479408bc |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( 2^{4} \cdot 19^{8} \cdot 83^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$6308$ |
$12$ |
$0$ |
$5.668181976$ |
$1$ |
|
$0$ |
$3589632$ |
$1.715389$ |
$288527616/6889$ |
$0.74861$ |
$3.50209$ |
$[0, 0, 0, -89167, 10034717]$ |
\(y^2=x^3-89167x+10034717\) |
2.2.0.a.1, 38.6.0.a.1, 332.4.0.?, 6308.12.0.? |
$[(173641/30, 3086189/30)]$ |
| 479408.bd1 |
479408bd1 |
479408.bd |
479408bd |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{10} \cdot 19^{8} \cdot 83^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$36$ |
$2, 3$ |
$0$ |
$108979200$ |
$3.070152$ |
$1977478112299644/1421993672123$ |
$0.95373$ |
$4.57319$ |
$[0, 0, 0, 9514877, -5564089390]$ |
\(y^2=x^3+9514877x-5564089390\) |
166.2.0.? |
$[ ]$ |