| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 473382.a1 |
473382a2 |
473382.a |
473382a |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( 2^{3} \cdot 3^{14} \cdot 7^{4} \cdot 13 \cdot 17^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1768$ |
$12$ |
$0$ |
$8.357124077$ |
$1$ |
|
$2$ |
$100270080$ |
$3.196522$ |
$28632956937857/1638307944$ |
$0.97197$ |
$4.82689$ |
$[1, -1, 0, -28181889, 54670430709]$ |
\(y^2+xy=x^3-x^2-28181889x+54670430709\) |
2.3.0.a.1, 68.6.0.c.1, 104.6.0.?, 1768.12.0.? |
$[(32527/3, 55604/3)]$ |
$1$ |
| 473382.a2 |
473382a1 |
473382.a |
473382a |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( 2^{6} \cdot 3^{10} \cdot 7^{2} \cdot 13^{2} \cdot 17^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1768$ |
$12$ |
$0$ |
$4.178562038$ |
$1$ |
|
$3$ |
$50135040$ |
$2.849949$ |
$178738971137/42928704$ |
$0.94446$ |
$4.43842$ |
$[1, -1, 0, -5189049, -3478461651]$ |
\(y^2+xy=x^3-x^2-5189049x-3478461651\) |
2.3.0.a.1, 34.6.0.a.1, 104.6.0.?, 1768.12.0.? |
$[(-753, 1605)]$ |
$1$ |
| 473382.b1 |
473382b1 |
473382.b |
473382b |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2 \cdot 3^{19} \cdot 7 \cdot 13 \cdot 17^{9} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$37128$ |
$2$ |
$0$ |
$4.634192920$ |
$1$ |
|
$8$ |
$73322496$ |
$3.120003$ |
$-153509362902771121/1425589419618$ |
$0.93988$ |
$4.83479$ |
$[1, -1, 0, -29014209, 60641948119]$ |
\(y^2+xy=x^3-x^2-29014209x+60641948119\) |
37128.2.0.? |
$[(10451, 942839), (233525, 112702913)]$ |
$1$ |
| 473382.c1 |
473382c1 |
473382.c |
473382c |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{9} \cdot 7 \cdot 13 \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$37128$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$13943808$ |
$2.182220$ |
$328509/728$ |
$0.77439$ |
$3.75957$ |
$[1, -1, 0, 190686, 53862524]$ |
\(y^2+xy=x^3-x^2+190686x+53862524\) |
37128.2.0.? |
$[ ]$ |
$1$ |
| 473382.d1 |
473382d1 |
473382.d |
473382d |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 7 \cdot 13^{4} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$28$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$51701760$ |
$2.903996$ |
$42782371921/3198832$ |
$1.00154$ |
$4.54582$ |
$[1, -1, 0, -8284239, 8566249149]$ |
\(y^2+xy=x^3-x^2-8284239x+8566249149\) |
28.2.0.a.1 |
$[ ]$ |
$1$ |
| 473382.e1 |
473382e1 |
473382.e |
473382e |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2 \cdot 3^{6} \cdot 7^{3} \cdot 13 \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$0.882776493$ |
$1$ |
|
$4$ |
$2612736$ |
$1.408056$ |
$4019679/8918$ |
$1.11550$ |
$3.04869$ |
$[1, -1, 0, 8616, 516014]$ |
\(y^2+xy=x^3-x^2+8616x+516014\) |
728.2.0.? |
$[(47, 988)]$ |
$1$ |
| 473382.f1 |
473382f2 |
473382.f |
473382f |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( 2 \cdot 3^{3} \cdot 7 \cdot 13^{2} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$37128$ |
$12$ |
$0$ |
$4.201556564$ |
$1$ |
|
$0$ |
$4792320$ |
$1.606407$ |
$38034753147/683774$ |
$0.86061$ |
$3.41736$ |
$[1, -1, 0, -60744, -5657026]$ |
\(y^2+xy=x^3-x^2-60744x-5657026\) |
2.3.0.a.1, 168.6.0.?, 2652.6.0.?, 12376.6.0.?, 37128.12.0.? |
$[(4115/2, 251361/2)]$ |
$1$ |
| 473382.f2 |
473382f1 |
473382.f |
473382f |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{2} \cdot 3^{3} \cdot 7^{2} \cdot 13 \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$37128$ |
$12$ |
$0$ |
$2.100778282$ |
$1$ |
|
$3$ |
$2396160$ |
$1.259832$ |
$-27/43316$ |
$1.03336$ |
$2.94055$ |
$[1, -1, 0, -54, -255616]$ |
\(y^2+xy=x^3-x^2-54x-255616\) |
2.3.0.a.1, 168.6.0.?, 1326.6.0.?, 12376.6.0.?, 37128.12.0.? |
$[(1016, 31860)]$ |
$1$ |
| 473382.g1 |
473382g1 |
473382.g |
473382g |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2 \cdot 3^{3} \cdot 7^{6} \cdot 13^{2} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$408$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$54991872$ |
$3.094955$ |
$-209209671446571/39765362$ |
$0.96108$ |
$4.94371$ |
$[1, -1, 0, -46870941, 123542427043]$ |
\(y^2+xy=x^3-x^2-46870941x+123542427043\) |
3.4.0.a.1, 24.8.0.d.1, 51.8.0-3.a.1.2, 408.16.0.? |
$[ ]$ |
$1$ |
| 473382.g2 |
473382g2 |
473382.g |
473382g |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{9} \cdot 7^{2} \cdot 13^{6} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$408$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$164975616$ |
$3.644260$ |
$8526548781/1892109128$ |
$1.00351$ |
$5.12967$ |
$[1, -1, 0, 14516994, 416342414348]$ |
\(y^2+xy=x^3-x^2+14516994x+416342414348\) |
3.4.0.a.1, 24.8.0.d.1, 51.8.0-3.a.1.1, 408.16.0.? |
$[ ]$ |
$1$ |
| 473382.h1 |
473382h1 |
473382.h |
473382h |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{11} \cdot 3^{9} \cdot 7^{5} \cdot 13 \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$37.14165917$ |
$1$ |
|
$0$ |
$25259520$ |
$2.786354$ |
$-215773279370739/447469568$ |
$1.11419$ |
$4.58350$ |
$[1, -1, 0, -9750336, -11737188352]$ |
\(y^2+xy=x^3-x^2-9750336x-11737188352\) |
2184.2.0.? |
$[(62895510104674879/2007403, 15366285285872874578016922/2007403)]$ |
$1$ |
| 473382.i1 |
473382i1 |
473382.i |
473382i |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2 \cdot 3^{10} \cdot 7 \cdot 13 \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12376$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$13787136$ |
$2.314930$ |
$-2521008881/14742$ |
$0.84062$ |
$4.11310$ |
$[1, -1, 0, -1253736, 543364366]$ |
\(y^2+xy=x^3-x^2-1253736x+543364366\) |
12376.2.0.? |
$[ ]$ |
$1$ |
| 473382.j1 |
473382j1 |
473382.j |
473382j |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{23} \cdot 3^{9} \cdot 7^{2} \cdot 13^{2} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9538560$ |
$2.059902$ |
$23609740877181/69466062848$ |
$0.94831$ |
$3.65435$ |
$[1, -1, 0, 106689, 27080333]$ |
\(y^2+xy=x^3-x^2+106689x+27080333\) |
24.2.0.b.1 |
$[ ]$ |
$1$ |
| 473382.k1 |
473382k1 |
473382.k |
473382k |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{16} \cdot 3^{10} \cdot 7 \cdot 13 \cdot 17^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$14.96393419$ |
$1$ |
|
$0$ |
$91496448$ |
$3.260674$ |
$-88093331713/483065856$ |
$0.93637$ |
$4.78085$ |
$[1, -1, 0, -10539306, -42621516684]$ |
\(y^2+xy=x^3-x^2-10539306x-42621516684\) |
182.2.0.? |
$[(148400676/35, 1804540765194/35)]$ |
$1$ |
| 473382.l1 |
473382l1 |
473382.l |
473382l |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{11} \cdot 3^{6} \cdot 7 \cdot 13^{3} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12376$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$29872128$ |
$2.804344$ |
$-20145851361/31496192$ |
$0.91529$ |
$4.37153$ |
$[1, -1, 0, -2506551, 2939331293]$ |
\(y^2+xy=x^3-x^2-2506551x+2939331293\) |
12376.2.0.? |
$[ ]$ |
$1$ |
| 473382.m1 |
473382m2 |
473382.m |
473382m |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 7^{3} \cdot 13^{3} \cdot 17^{8} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$546$ |
$16$ |
$0$ |
$2.292227730$ |
$1$ |
|
$6$ |
$19035648$ |
$2.398453$ |
$-11624563297/3014284$ |
$0.85036$ |
$4.04082$ |
$[1, -1, 0, -811566, 338836176]$ |
\(y^2+xy=x^3-x^2-811566x+338836176\) |
3.8.0-3.a.1.2, 182.2.0.?, 546.16.0.? |
$[(672, 9492)]$ |
$1$ |
| 473382.m2 |
473382m1 |
473382.m |
473382m |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{6} \cdot 3^{6} \cdot 7 \cdot 13 \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$546$ |
$16$ |
$0$ |
$6.876683192$ |
$1$ |
|
$0$ |
$6345216$ |
$1.849146$ |
$8381663/5824$ |
$0.77997$ |
$3.45884$ |
$[1, -1, 0, 72774, -3403404]$ |
\(y^2+xy=x^3-x^2+72774x-3403404\) |
3.8.0-3.a.1.1, 182.2.0.?, 546.16.0.? |
$[(2964/5, 320478/5)]$ |
$1$ |
| 473382.n1 |
473382n1 |
473382.n |
473382n |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( 2^{10} \cdot 3^{6} \cdot 7^{7} \cdot 13^{2} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$28$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$153538560$ |
$3.643116$ |
$2538494967718840113/142519057408$ |
$0.99924$ |
$5.48189$ |
$[1, -1, 0, -488716683, -4158148854331]$ |
\(y^2+xy=x^3-x^2-488716683x-4158148854331\) |
28.2.0.a.1 |
$[ ]$ |
$1$ |
| 473382.o1 |
473382o1 |
473382.o |
473382o |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{7} \cdot 7 \cdot 13 \cdot 17^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$18564$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$5570560$ |
$2.066570$ |
$9129329/4368$ |
$0.79348$ |
$3.68219$ |
$[1, -1, 0, -192528, -13484880]$ |
\(y^2+xy=x^3-x^2-192528x-13484880\) |
2.3.0.a.1, 68.6.0.b.1, 1092.6.0.?, 9282.6.0.?, 18564.12.0.? |
$[ ]$ |
$1$ |
| 473382.o2 |
473382o2 |
473382.o |
473382o |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{2} \cdot 3^{8} \cdot 7^{2} \cdot 13^{2} \cdot 17^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$18564$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11141120$ |
$2.413143$ |
$423564751/298116$ |
$0.85336$ |
$3.97583$ |
$[1, -1, 0, 691812, -103156956]$ |
\(y^2+xy=x^3-x^2+691812x-103156956\) |
2.3.0.a.1, 68.6.0.a.1, 1092.6.0.?, 18564.12.0.? |
$[ ]$ |
$1$ |
| 473382.p1 |
473382p1 |
473382.p |
473382p |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{7} \cdot 3^{6} \cdot 7^{3} \cdot 13 \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$8709120$ |
$2.246090$ |
$-297141543217/164947328$ |
$0.86036$ |
$3.87835$ |
$[1, -1, 0, -361593, -117054099]$ |
\(y^2+xy=x^3-x^2-361593x-117054099\) |
728.2.0.? |
$[ ]$ |
$1$ |
| 473382.q1 |
473382q1 |
473382.q |
473382q |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{6} \cdot 3^{6} \cdot 7 \cdot 13 \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3094$ |
$2$ |
$0$ |
$2.999560175$ |
$1$ |
|
$2$ |
$483840$ |
$0.705816$ |
$-33076161/5824$ |
$0.79861$ |
$2.50016$ |
$[1, -1, 0, -1023, -14131]$ |
\(y^2+xy=x^3-x^2-1023x-14131\) |
3094.2.0.? |
$[(38, 9)]$ |
$1$ |
| 473382.r1 |
473382r1 |
473382.r |
473382r |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{11} \cdot 3^{7} \cdot 7^{2} \cdot 13 \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$312$ |
$2$ |
$0$ |
$1.325359491$ |
$1$ |
|
$4$ |
$1115136$ |
$1.236959$ |
$-7465538147617/3913728$ |
$0.90117$ |
$3.20641$ |
$[1, -1, 0, -24228, 1458256]$ |
\(y^2+xy=x^3-x^2-24228x+1458256\) |
312.2.0.? |
$[(89, -13)]$ |
$1$ |
| 473382.s1 |
473382s1 |
473382.s |
473382s |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( 2^{28} \cdot 3^{15} \cdot 7 \cdot 13 \cdot 17^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$18564$ |
$12$ |
$0$ |
$46.46850020$ |
$1$ |
|
$1$ |
$350945280$ |
$4.218849$ |
$3574622011078547729/480808972320768$ |
$1.02748$ |
$5.72490$ |
$[1, -1, 0, -1408503978, -17825288060300]$ |
\(y^2+xy=x^3-x^2-1408503978x-17825288060300\) |
2.3.0.a.1, 68.6.0.b.1, 1092.6.0.?, 9282.6.0.?, 18564.12.0.? |
$[(-9838151363081804602857/598919858, 92460771582145496116320816328967/598919858)]$ |
$1$ |
| 473382.s2 |
473382s2 |
473382.s |
473382s |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{14} \cdot 3^{24} \cdot 7^{2} \cdot 13^{2} \cdot 17^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$18564$ |
$12$ |
$0$ |
$23.23425010$ |
$1$ |
|
$0$ |
$701890560$ |
$4.565422$ |
$13878520798652851951/52563625073197056$ |
$1.01433$ |
$5.95977$ |
$[1, -1, 0, 2213752662, -94401966783884]$ |
\(y^2+xy=x^3-x^2+2213752662x-94401966783884\) |
2.3.0.a.1, 68.6.0.a.1, 1092.6.0.?, 18564.12.0.? |
$[(55477726815620/25391, 442575277588904944354/25391)]$ |
$1$ |
| 473382.t1 |
473382t2 |
473382.t |
473382t |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 7^{16} \cdot 13 \cdot 17^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$4.713188371$ |
$1$ |
|
$0$ |
$802160640$ |
$4.484550$ |
$196939179295135171649/6912449558477008$ |
$1.00215$ |
$6.03169$ |
$[1, -1, 0, -5359514013, 146370485193205]$ |
\(y^2+xy=x^3-x^2-5359514013x+146370485193205\) |
2.3.0.a.1, 52.6.0.d.1, 68.6.0.c.1, 442.6.0.?, 884.12.0.? |
$[(133623/2, 17043131/2)]$ |
$1$ |
| 473382.t2 |
473382t1 |
473382.t |
473382t |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 7^{8} \cdot 13^{2} \cdot 17^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$2.356594185$ |
$1$ |
|
$3$ |
$401080320$ |
$4.137978$ |
$191913220541846010689/249408350464$ |
$1.00139$ |
$6.02971$ |
$[1, -1, 0, -5313528333, 149082269939941]$ |
\(y^2+xy=x^3-x^2-5313528333x+149082269939941\) |
2.3.0.a.1, 34.6.0.a.1, 52.6.0.d.1, 884.12.0.? |
$[(34634, 2551067)]$ |
$1$ |
| 473382.u1 |
473382u1 |
473382.u |
473382u |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{5} \cdot 3^{9} \cdot 7^{2} \cdot 13^{3} \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$312$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2903040$ |
$1.717854$ |
$-88093331713/93012192$ |
$0.91214$ |
$3.37968$ |
$[1, -1, 0, -36468, -4495824]$ |
\(y^2+xy=x^3-x^2-36468x-4495824\) |
312.2.0.? |
$[ ]$ |
$1$ |
| 473382.v1 |
473382v3 |
473382.v |
473382v |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( 2 \cdot 3^{8} \cdot 7^{4} \cdot 13^{2} \cdot 17^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.15 |
2B |
$2856$ |
$48$ |
$0$ |
$2.202090948$ |
$1$ |
|
$2$ |
$51904512$ |
$3.137264$ |
$498513145416992497/610024187682$ |
$1.00135$ |
$4.92371$ |
$[1, -1, 0, -42965973, 108297522139]$ |
\(y^2+xy=x^3-x^2-42965973x+108297522139\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 168.24.0.?, 204.12.0.?, $\ldots$ |
$[(3141, 64177)]$ |
$1$ |
| 473382.v2 |
473382v4 |
473382.v |
473382v |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( 2 \cdot 3^{8} \cdot 7 \cdot 13^{8} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$2856$ |
$48$ |
$0$ |
$8.808363793$ |
$1$ |
|
$2$ |
$51904512$ |
$3.137264$ |
$192013151632280497/1747295204382$ |
$0.94100$ |
$4.85070$ |
$[1, -1, 0, -31261473, -66737469929]$ |
\(y^2+xy=x^3-x^2-31261473x-66737469929\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 84.12.0.?, 168.24.0.?, $\ldots$ |
$[(16847, 2038019)]$ |
$1$ |
| 473382.v3 |
473382v2 |
473382.v |
473382v |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( 2^{2} \cdot 3^{10} \cdot 7^{2} \cdot 13^{4} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.3 |
2Cs |
$2856$ |
$48$ |
$0$ |
$4.404181896$ |
$1$ |
|
$6$ |
$25952256$ |
$2.790691$ |
$248063797363537/131042552004$ |
$0.97694$ |
$4.34169$ |
$[1, -1, 0, -3404763, 714767665]$ |
\(y^2+xy=x^3-x^2-3404763x+714767665\) |
2.6.0.a.1, 8.12.0.a.1, 84.12.0.?, 168.24.0.?, 204.12.0.?, $\ldots$ |
$[(2108, 52811)]$ |
$1$ |
| 473382.v4 |
473382v1 |
473382.v |
473382v |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{14} \cdot 7 \cdot 13^{2} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$2856$ |
$48$ |
$0$ |
$2.202090948$ |
$1$ |
|
$5$ |
$12976128$ |
$2.444118$ |
$3325964415983/2111172336$ |
$0.95191$ |
$4.01172$ |
$[1, -1, 0, 808857, 86938285]$ |
\(y^2+xy=x^3-x^2+808857x+86938285\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 84.12.0.?, 168.24.0.?, $\ldots$ |
$[(-55, 6530)]$ |
$1$ |
| 473382.w1 |
473382w1 |
473382.w |
473382w |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2 \cdot 3^{12} \cdot 7 \cdot 13^{3} \cdot 17^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12376$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$96215040$ |
$3.385746$ |
$-4069400507818743889/31836860010774$ |
$0.95569$ |
$5.08541$ |
$[1, -1, 0, -86511915, -311779687901]$ |
\(y^2+xy=x^3-x^2-86511915x-311779687901\) |
12376.2.0.? |
$[ ]$ |
$1$ |
| 473382.x1 |
473382x2 |
473382.x |
473382x |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2 \cdot 3^{7} \cdot 7 \cdot 13^{7} \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$37128$ |
$96$ |
$2$ |
$1$ |
$9$ |
$3$ |
$0$ |
$331914240$ |
$4.012459$ |
$-5486773802537974663600129/2635437714$ |
$1.05935$ |
$6.16448$ |
$[1, -1, 0, -9557364150, 359631893307694]$ |
\(y^2+xy=x^3-x^2-9557364150x+359631893307694\) |
7.24.0.a.2, 357.48.0.?, 2184.48.2.?, 12376.48.0.?, 37128.96.2.? |
$[ ]$ |
$1$ |
| 473382.x2 |
473382x1 |
473382.x |
473382x |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{7} \cdot 3^{13} \cdot 7^{7} \cdot 13 \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.1 |
7B.6.1 |
$37128$ |
$96$ |
$2$ |
$1$ |
$9$ |
$3$ |
$0$ |
$47416320$ |
$3.039505$ |
$40251338884511/2997011332224$ |
$1.03878$ |
$4.57362$ |
$[1, -1, 0, 1857060, 11005257424]$ |
\(y^2+xy=x^3-x^2+1857060x+11005257424\) |
7.24.0.a.1, 357.48.0.?, 2184.48.2.?, 12376.48.0.?, 37128.96.2.? |
$[ ]$ |
$1$ |
| 473382.y1 |
473382y1 |
473382.y |
473382y |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{17} \cdot 3^{9} \cdot 7 \cdot 13 \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$10.81409517$ |
$1$ |
|
$0$ |
$8434176$ |
$2.280582$ |
$2284322013/11927552$ |
$0.95325$ |
$3.86591$ |
$[1, -1, 0, 214095, 107945117]$ |
\(y^2+xy=x^3-x^2+214095x+107945117\) |
2184.2.0.? |
$[(96241/17, 71402915/17)]$ |
$1$ |
| 473382.z1 |
473382z1 |
473382.z |
473382z |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{7} \cdot 3^{12} \cdot 7 \cdot 13 \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12376$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7741440$ |
$2.210583$ |
$-148035889/144353664$ |
$1.03348$ |
$3.81354$ |
$[1, -1, 0, -28665, 76709997]$ |
\(y^2+xy=x^3-x^2-28665x+76709997\) |
12376.2.0.? |
$[ ]$ |
$1$ |
| 473382.ba1 |
473382ba1 |
473382.ba |
473382ba |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{5} \cdot 3^{9} \cdot 7^{2} \cdot 13^{2} \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$2.113123260$ |
$1$ |
|
$10$ |
$622080$ |
$1.016537$ |
$5584653/264992$ |
$0.85411$ |
$2.71539$ |
$[1, -1, 0, 660, 58544]$ |
\(y^2+xy=x^3-x^2+660x+58544\) |
24.2.0.b.1 |
$[(-23, 187), (29, 304)]$ |
$1$ |
| 473382.bb1 |
473382bb1 |
473382.bb |
473382bb |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{13} \cdot 3^{13} \cdot 7^{2} \cdot 13^{4} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$8.052011737$ |
$1$ |
|
$0$ |
$171085824$ |
$3.688107$ |
$-4164351562081/25073110573056$ |
$1.03447$ |
$5.17040$ |
$[1, -1, 0, -5763870, -543302123756]$ |
\(y^2+xy=x^3-x^2-5763870x-543302123756\) |
24.2.0.b.1 |
$[(41123/2, 5524333/2)]$ |
$1$ |
| 473382.bc1 |
473382bc1 |
473382.bc |
473382bc |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{5} \cdot 3^{9} \cdot 7^{2} \cdot 13^{2} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1935360$ |
$1.452383$ |
$-325511540216209/7154784$ |
$0.92724$ |
$3.49524$ |
$[1, -1, 0, -85275, -9563643]$ |
\(y^2+xy=x^3-x^2-85275x-9563643\) |
24.2.0.b.1 |
$[ ]$ |
$1$ |
| 473382.bd1 |
473382bd3 |
473382.bd |
473382bd |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2 \cdot 3^{6} \cdot 7 \cdot 13 \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$111384$ |
$144$ |
$3$ |
$7.508358274$ |
$1$ |
|
$0$ |
$16796160$ |
$2.646370$ |
$-424962187484640625/182$ |
$1.05379$ |
$4.91149$ |
$[1, -1, 0, -40739517, 100095861667]$ |
\(y^2+xy=x^3-x^2-40739517x+100095861667\) |
3.4.0.a.1, 9.12.0.a.1, 51.8.0-3.a.1.2, 153.24.0.?, 728.2.0.?, $\ldots$ |
$[(456153/11, 9365446/11)]$ |
$1$ |
| 473382.bd2 |
473382bd2 |
473382.bd |
473382bd |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{6} \cdot 7^{3} \cdot 13^{3} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$111384$ |
$144$ |
$3$ |
$2.502786091$ |
$1$ |
|
$2$ |
$5598720$ |
$2.097065$ |
$-795309684625/6028568$ |
$0.94067$ |
$3.90322$ |
$[1, -1, 0, -502047, 137938693]$ |
\(y^2+xy=x^3-x^2-502047x+137938693\) |
3.12.0.a.1, 51.24.0-3.a.1.1, 728.2.0.?, 819.36.0.?, 2184.24.1.?, $\ldots$ |
$[(1203, 35090)]$ |
$1$ |
| 473382.bd3 |
473382bd1 |
473382.bd |
473382bd |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{9} \cdot 3^{6} \cdot 7 \cdot 13 \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$111384$ |
$144$ |
$3$ |
$7.508358274$ |
$1$ |
|
$0$ |
$1866240$ |
$1.547758$ |
$37595375/46592$ |
$0.87083$ |
$3.15020$ |
$[1, -1, 0, 18153, 1001245]$ |
\(y^2+xy=x^3-x^2+18153x+1001245\) |
3.4.0.a.1, 9.12.0.a.1, 51.8.0-3.a.1.1, 153.24.0.?, 728.2.0.?, $\ldots$ |
$[(12973/12, 3090469/12)]$ |
$1$ |
| 473382.be1 |
473382be3 |
473382.be |
473382be |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 7^{6} \cdot 13^{6} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$2652$ |
$96$ |
$1$ |
$2.207884202$ |
$1$ |
|
$3$ |
$95551488$ |
$3.473167$ |
$6428890034697390625/154460436555152$ |
$0.99341$ |
$5.11938$ |
$[1, -1, 0, -100757592, 381141041008]$ |
\(y^2+xy=x^3-x^2-100757592x+381141041008\) |
2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.1, 34.6.0.a.1, 51.8.0-3.a.1.2, $\ldots$ |
$[(-8593, 786851)]$ |
$1$ |
| 473382.be2 |
473382be1 |
473382.be |
473382be |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{6} \cdot 7^{2} \cdot 13^{2} \cdot 17^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$2652$ |
$96$ |
$1$ |
$6.623652606$ |
$1$ |
|
$1$ |
$31850496$ |
$2.923862$ |
$11762905557390625/166643929088$ |
$0.96488$ |
$4.63700$ |
$[1, -1, 0, -12323592, -16443366080]$ |
\(y^2+xy=x^3-x^2-12323592x-16443366080\) |
2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.3, 34.6.0.a.1, 51.8.0-3.a.1.1, $\ldots$ |
$[(-8089/2, 122623/2)]$ |
$1$ |
| 473382.be3 |
473382be2 |
473382.be |
473382be |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{6} \cdot 3^{6} \cdot 7^{4} \cdot 13 \cdot 17^{12} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$2652$ |
$96$ |
$1$ |
$13.24730521$ |
$1$ |
|
$0$ |
$63700992$ |
$3.270435$ |
$-21357685518625/48217980236608$ |
$1.00294$ |
$4.78683$ |
$[1, -1, 0, -1503432, -44322590336]$ |
\(y^2+xy=x^3-x^2-1503432x-44322590336\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.5, 51.8.0-3.a.1.1, $\ldots$ |
$[(3191959/18, 5494663207/18)]$ |
$1$ |
| 473382.be4 |
473382be4 |
473382.be |
473382be |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 7^{12} \cdot 13^{3} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$2652$ |
$96$ |
$1$ |
$4.415768404$ |
$1$ |
|
$2$ |
$191102976$ |
$3.819744$ |
$15567882240377375/35153160025570132$ |
$1.02735$ |
$5.29122$ |
$[1, -1, 0, 13530348, 1196448347380]$ |
\(y^2+xy=x^3-x^2+13530348x+1196448347380\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.11, 51.8.0-3.a.1.2, $\ldots$ |
$[(89297, 26684528)]$ |
$1$ |
| 473382.bf1 |
473382bf4 |
473382.bf |
473382bf |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( 2^{9} \cdot 3^{9} \cdot 7 \cdot 13^{6} \cdot 17^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$37128$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$89579520$ |
$3.508350$ |
$681832159429723875/4999492918784$ |
$0.95605$ |
$5.19989$ |
$[1, -1, 0, -143080197, -654522742315]$ |
\(y^2+xy=x^3-x^2-143080197x-654522742315\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 51.8.0-3.a.1.1, 102.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 473382.bf2 |
473382bf2 |
473382.bf |
473382bf |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( 2^{3} \cdot 3^{3} \cdot 7^{3} \cdot 13^{2} \cdot 17^{12} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$37128$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$29859840$ |
$2.959042$ |
$260421323354494875/11193459697784$ |
$0.95179$ |
$4.62181$ |
$[1, -1, 0, -11534622, 14510451724]$ |
\(y^2+xy=x^3-x^2-11534622x+14510451724\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 51.8.0-3.a.1.2, 102.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 473382.bf3 |
473382bf3 |
473382.bf |
473382bf |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{18} \cdot 3^{9} \cdot 7^{2} \cdot 13^{3} \cdot 17^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$37128$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$44789760$ |
$3.161774$ |
$-7994001499875/479749996544$ |
$0.95956$ |
$4.68696$ |
$[1, -1, 0, -3250437, -23079512107]$ |
\(y^2+xy=x^3-x^2-3250437x-23079512107\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 51.8.0-3.a.1.1, 78.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |