Learn more

Refine search


Results (1-50 of 241 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
473382.a1 473382.a \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $8.357124077$ $[1, -1, 0, -28181889, 54670430709]$ \(y^2+xy=x^3-x^2-28181889x+54670430709\) 2.3.0.a.1, 68.6.0.c.1, 104.6.0.?, 1768.12.0.? $[(32527/3, 55604/3)]$
473382.a2 473382.a \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $4.178562038$ $[1, -1, 0, -5189049, -3478461651]$ \(y^2+xy=x^3-x^2-5189049x-3478461651\) 2.3.0.a.1, 34.6.0.a.1, 104.6.0.?, 1768.12.0.? $[(-753, 1605)]$
473382.b1 473382.b \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $2$ $\mathsf{trivial}$ $4.634192920$ $[1, -1, 0, -29014209, 60641948119]$ \(y^2+xy=x^3-x^2-29014209x+60641948119\) 37128.2.0.? $[(10451, 942839), (233525, 112702913)]$
473382.c1 473382.c \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 190686, 53862524]$ \(y^2+xy=x^3-x^2+190686x+53862524\) 37128.2.0.? $[ ]$
473382.d1 473382.d \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -8284239, 8566249149]$ \(y^2+xy=x^3-x^2-8284239x+8566249149\) 28.2.0.a.1 $[ ]$
473382.e1 473382.e \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.882776493$ $[1, -1, 0, 8616, 516014]$ \(y^2+xy=x^3-x^2+8616x+516014\) 728.2.0.? $[(47, 988)]$
473382.f1 473382.f \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $4.201556564$ $[1, -1, 0, -60744, -5657026]$ \(y^2+xy=x^3-x^2-60744x-5657026\) 2.3.0.a.1, 168.6.0.?, 2652.6.0.?, 12376.6.0.?, 37128.12.0.? $[(4115/2, 251361/2)]$
473382.f2 473382.f \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.100778282$ $[1, -1, 0, -54, -255616]$ \(y^2+xy=x^3-x^2-54x-255616\) 2.3.0.a.1, 168.6.0.?, 1326.6.0.?, 12376.6.0.?, 37128.12.0.? $[(1016, 31860)]$
473382.g1 473382.g \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -46870941, 123542427043]$ \(y^2+xy=x^3-x^2-46870941x+123542427043\) 3.4.0.a.1, 24.8.0.d.1, 51.8.0-3.a.1.2, 408.16.0.? $[ ]$
473382.g2 473382.g \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 14516994, 416342414348]$ \(y^2+xy=x^3-x^2+14516994x+416342414348\) 3.4.0.a.1, 24.8.0.d.1, 51.8.0-3.a.1.1, 408.16.0.? $[ ]$
473382.h1 473382.h \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $37.14165917$ $[1, -1, 0, -9750336, -11737188352]$ \(y^2+xy=x^3-x^2-9750336x-11737188352\) 2184.2.0.? $[(62895510104674879/2007403, 15366285285872874578016922/2007403)]$
473382.i1 473382.i \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -1253736, 543364366]$ \(y^2+xy=x^3-x^2-1253736x+543364366\) 12376.2.0.? $[ ]$
473382.j1 473382.j \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 106689, 27080333]$ \(y^2+xy=x^3-x^2+106689x+27080333\) 24.2.0.b.1 $[ ]$
473382.k1 473382.k \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $14.96393419$ $[1, -1, 0, -10539306, -42621516684]$ \(y^2+xy=x^3-x^2-10539306x-42621516684\) 182.2.0.? $[(148400676/35, 1804540765194/35)]$
473382.l1 473382.l \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -2506551, 2939331293]$ \(y^2+xy=x^3-x^2-2506551x+2939331293\) 12376.2.0.? $[ ]$
473382.m1 473382.m \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\Z/3\Z$ $2.292227730$ $[1, -1, 0, -811566, 338836176]$ \(y^2+xy=x^3-x^2-811566x+338836176\) 3.8.0-3.a.1.2, 182.2.0.?, 546.16.0.? $[(672, 9492)]$
473382.m2 473382.m \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $6.876683192$ $[1, -1, 0, 72774, -3403404]$ \(y^2+xy=x^3-x^2+72774x-3403404\) 3.8.0-3.a.1.1, 182.2.0.?, 546.16.0.? $[(2964/5, 320478/5)]$
473382.n1 473382.n \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -488716683, -4158148854331]$ \(y^2+xy=x^3-x^2-488716683x-4158148854331\) 28.2.0.a.1 $[ ]$
473382.o1 473382.o \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -192528, -13484880]$ \(y^2+xy=x^3-x^2-192528x-13484880\) 2.3.0.a.1, 68.6.0.b.1, 1092.6.0.?, 9282.6.0.?, 18564.12.0.? $[ ]$
473382.o2 473382.o \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 691812, -103156956]$ \(y^2+xy=x^3-x^2+691812x-103156956\) 2.3.0.a.1, 68.6.0.a.1, 1092.6.0.?, 18564.12.0.? $[ ]$
473382.p1 473382.p \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -361593, -117054099]$ \(y^2+xy=x^3-x^2-361593x-117054099\) 728.2.0.? $[ ]$
473382.q1 473382.q \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $2.999560175$ $[1, -1, 0, -1023, -14131]$ \(y^2+xy=x^3-x^2-1023x-14131\) 3094.2.0.? $[(38, 9)]$
473382.r1 473382.r \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $1.325359491$ $[1, -1, 0, -24228, 1458256]$ \(y^2+xy=x^3-x^2-24228x+1458256\) 312.2.0.? $[(89, -13)]$
473382.s1 473382.s \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $46.46850020$ $[1, -1, 0, -1408503978, -17825288060300]$ \(y^2+xy=x^3-x^2-1408503978x-17825288060300\) 2.3.0.a.1, 68.6.0.b.1, 1092.6.0.?, 9282.6.0.?, 18564.12.0.? $[(-9838151363081804602857/598919858, 92460771582145496116320816328967/598919858)]$
473382.s2 473382.s \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $23.23425010$ $[1, -1, 0, 2213752662, -94401966783884]$ \(y^2+xy=x^3-x^2+2213752662x-94401966783884\) 2.3.0.a.1, 68.6.0.a.1, 1092.6.0.?, 18564.12.0.? $[(55477726815620/25391, 442575277588904944354/25391)]$
473382.t1 473382.t \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $4.713188371$ $[1, -1, 0, -5359514013, 146370485193205]$ \(y^2+xy=x^3-x^2-5359514013x+146370485193205\) 2.3.0.a.1, 52.6.0.d.1, 68.6.0.c.1, 442.6.0.?, 884.12.0.? $[(133623/2, 17043131/2)]$
473382.t2 473382.t \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.356594185$ $[1, -1, 0, -5313528333, 149082269939941]$ \(y^2+xy=x^3-x^2-5313528333x+149082269939941\) 2.3.0.a.1, 34.6.0.a.1, 52.6.0.d.1, 884.12.0.? $[(34634, 2551067)]$
473382.u1 473382.u \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -36468, -4495824]$ \(y^2+xy=x^3-x^2-36468x-4495824\) 312.2.0.? $[ ]$
473382.v1 473382.v \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.202090948$ $[1, -1, 0, -42965973, 108297522139]$ \(y^2+xy=x^3-x^2-42965973x+108297522139\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 168.24.0.?, 204.12.0.?, $\ldots$ $[(3141, 64177)]$
473382.v2 473382.v \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $8.808363793$ $[1, -1, 0, -31261473, -66737469929]$ \(y^2+xy=x^3-x^2-31261473x-66737469929\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 84.12.0.?, 168.24.0.?, $\ldots$ $[(16847, 2038019)]$
473382.v3 473382.v \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.404181896$ $[1, -1, 0, -3404763, 714767665]$ \(y^2+xy=x^3-x^2-3404763x+714767665\) 2.6.0.a.1, 8.12.0.a.1, 84.12.0.?, 168.24.0.?, 204.12.0.?, $\ldots$ $[(2108, 52811)]$
473382.v4 473382.v \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.202090948$ $[1, -1, 0, 808857, 86938285]$ \(y^2+xy=x^3-x^2+808857x+86938285\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 84.12.0.?, 168.24.0.?, $\ldots$ $[(-55, 6530)]$
473382.w1 473382.w \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -86511915, -311779687901]$ \(y^2+xy=x^3-x^2-86511915x-311779687901\) 12376.2.0.? $[ ]$
473382.x1 473382.x \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -9557364150, 359631893307694]$ \(y^2+xy=x^3-x^2-9557364150x+359631893307694\) 7.24.0.a.2, 357.48.0.?, 2184.48.2.?, 12376.48.0.?, 37128.96.2.? $[ ]$
473382.x2 473382.x \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 1857060, 11005257424]$ \(y^2+xy=x^3-x^2+1857060x+11005257424\) 7.24.0.a.1, 357.48.0.?, 2184.48.2.?, 12376.48.0.?, 37128.96.2.? $[ ]$
473382.y1 473382.y \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $10.81409517$ $[1, -1, 0, 214095, 107945117]$ \(y^2+xy=x^3-x^2+214095x+107945117\) 2184.2.0.? $[(96241/17, 71402915/17)]$
473382.z1 473382.z \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -28665, 76709997]$ \(y^2+xy=x^3-x^2-28665x+76709997\) 12376.2.0.? $[ ]$
473382.ba1 473382.ba \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $2$ $\mathsf{trivial}$ $2.113123260$ $[1, -1, 0, 660, 58544]$ \(y^2+xy=x^3-x^2+660x+58544\) 24.2.0.b.1 $[(-23, 187), (29, 304)]$
473382.bb1 473382.bb \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $8.052011737$ $[1, -1, 0, -5763870, -543302123756]$ \(y^2+xy=x^3-x^2-5763870x-543302123756\) 24.2.0.b.1 $[(41123/2, 5524333/2)]$
473382.bc1 473382.bc \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -85275, -9563643]$ \(y^2+xy=x^3-x^2-85275x-9563643\) 24.2.0.b.1 $[ ]$
473382.bd1 473382.bd \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $7.508358274$ $[1, -1, 0, -40739517, 100095861667]$ \(y^2+xy=x^3-x^2-40739517x+100095861667\) 3.4.0.a.1, 9.12.0.a.1, 51.8.0-3.a.1.2, 153.24.0.?, 728.2.0.?, $\ldots$ $[(456153/11, 9365446/11)]$
473382.bd2 473382.bd \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $2.502786091$ $[1, -1, 0, -502047, 137938693]$ \(y^2+xy=x^3-x^2-502047x+137938693\) 3.12.0.a.1, 51.24.0-3.a.1.1, 728.2.0.?, 819.36.0.?, 2184.24.1.?, $\ldots$ $[(1203, 35090)]$
473382.bd3 473382.bd \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $7.508358274$ $[1, -1, 0, 18153, 1001245]$ \(y^2+xy=x^3-x^2+18153x+1001245\) 3.4.0.a.1, 9.12.0.a.1, 51.8.0-3.a.1.1, 153.24.0.?, 728.2.0.?, $\ldots$ $[(12973/12, 3090469/12)]$
473382.be1 473382.be \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.207884202$ $[1, -1, 0, -100757592, 381141041008]$ \(y^2+xy=x^3-x^2-100757592x+381141041008\) 2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.1, 34.6.0.a.1, 51.8.0-3.a.1.2, $\ldots$ $[(-8593, 786851)]$
473382.be2 473382.be \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $6.623652606$ $[1, -1, 0, -12323592, -16443366080]$ \(y^2+xy=x^3-x^2-12323592x-16443366080\) 2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.3, 34.6.0.a.1, 51.8.0-3.a.1.1, $\ldots$ $[(-8089/2, 122623/2)]$
473382.be3 473382.be \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $13.24730521$ $[1, -1, 0, -1503432, -44322590336]$ \(y^2+xy=x^3-x^2-1503432x-44322590336\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.5, 51.8.0-3.a.1.1, $\ldots$ $[(3191959/18, 5494663207/18)]$
473382.be4 473382.be \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $4.415768404$ $[1, -1, 0, 13530348, 1196448347380]$ \(y^2+xy=x^3-x^2+13530348x+1196448347380\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.11, 51.8.0-3.a.1.2, $\ldots$ $[(89297, 26684528)]$
473382.bf1 473382.bf \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -143080197, -654522742315]$ \(y^2+xy=x^3-x^2-143080197x-654522742315\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 51.8.0-3.a.1.1, 102.24.0.?, $\ldots$ $[ ]$
473382.bf2 473382.bf \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -11534622, 14510451724]$ \(y^2+xy=x^3-x^2-11534622x+14510451724\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 51.8.0-3.a.1.2, 102.24.0.?, $\ldots$ $[ ]$
473382.bf3 473382.bf \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -3250437, -23079512107]$ \(y^2+xy=x^3-x^2-3250437x-23079512107\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 51.8.0-3.a.1.1, 78.24.0.?, $\ldots$ $[ ]$
Next   displayed columns for results