| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 46546.a1 |
46546a4 |
46546.a |
46546a |
$4$ |
$6$ |
\( 2 \cdot 17 \cdot 37^{2} \) |
\( 2 \cdot 17^{6} \cdot 37^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.6, 3.4.0.1 |
2B, 3B |
$15096$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$616896$ |
$1.984947$ |
$159661140625/48275138$ |
$1.06848$ |
$4.41579$ |
$[1, 0, 1, -154726, -16200690]$ |
\(y^2+xy+y=x^3-154726x-16200690\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.b.1, 24.24.0.y.1, $\ldots$ |
$[ ]$ |
| 46546.a2 |
46546a3 |
46546.a |
46546a |
$4$ |
$6$ |
\( 2 \cdot 17 \cdot 37^{2} \) |
\( 2^{2} \cdot 17^{3} \cdot 37^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.1, 3.4.0.1 |
2B, 3B |
$15096$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$308448$ |
$1.638372$ |
$120920208625/19652$ |
$0.98564$ |
$4.38994$ |
$[1, 0, 1, -141036, -20395306]$ |
\(y^2+xy+y=x^3-141036x-20395306\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.c.1, 24.24.0.bw.1, $\ldots$ |
$[ ]$ |
| 46546.a3 |
46546a2 |
46546.a |
46546a |
$4$ |
$6$ |
\( 2 \cdot 17 \cdot 37^{2} \) |
\( 2^{3} \cdot 17^{2} \cdot 37^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.6, 3.4.0.1 |
2B, 3B |
$15096$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$205632$ |
$1.435640$ |
$8805624625/2312$ |
$0.96590$ |
$4.14620$ |
$[1, 0, 1, -58896, 5495222]$ |
\(y^2+xy+y=x^3-58896x+5495222\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.b.1, 24.24.0.y.1, $\ldots$ |
$[ ]$ |
| 46546.a4 |
46546a1 |
46546.a |
46546a |
$4$ |
$6$ |
\( 2 \cdot 17 \cdot 37^{2} \) |
\( 2^{6} \cdot 17 \cdot 37^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.1, 3.4.0.1 |
2B, 3B |
$15096$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$102816$ |
$1.089067$ |
$3048625/1088$ |
$0.90010$ |
$3.40482$ |
$[1, 0, 1, -4136, 63030]$ |
\(y^2+xy+y=x^3-4136x+63030\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.c.1, 24.24.0.bw.1, $\ldots$ |
$[ ]$ |
| 46546.b1 |
46546b2 |
46546.b |
46546b |
$2$ |
$3$ |
\( 2 \cdot 17 \cdot 37^{2} \) |
\( - 2 \cdot 17^{3} \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$15096$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$16848$ |
$0.244074$ |
$-3816983233/9826$ |
$0.86810$ |
$2.72502$ |
$[1, 0, 1, -362, -2682]$ |
\(y^2+xy+y=x^3-362x-2682\) |
3.4.0.a.1, 111.8.0.?, 136.2.0.?, 408.8.0.?, 15096.16.0.? |
$[ ]$ |
| 46546.b2 |
46546b1 |
46546.b |
46546b |
$2$ |
$3$ |
\( 2 \cdot 17 \cdot 37^{2} \) |
\( - 2^{3} \cdot 17 \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$15096$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5616$ |
$-0.305232$ |
$49247/136$ |
$0.74057$ |
$1.80068$ |
$[1, 0, 1, 8, -18]$ |
\(y^2+xy+y=x^3+8x-18\) |
3.4.0.a.1, 111.8.0.?, 136.2.0.?, 408.8.0.?, 15096.16.0.? |
$[ ]$ |
| 46546.c1 |
46546f2 |
46546.c |
46546f |
$2$ |
$3$ |
\( 2 \cdot 17 \cdot 37^{2} \) |
\( - 2 \cdot 17^{3} \cdot 37^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$408$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$623376$ |
$2.049534$ |
$-3816983233/9826$ |
$0.86810$ |
$4.74075$ |
$[1, 0, 0, -494922, -134353946]$ |
\(y^2+xy=x^3-494922x-134353946\) |
3.8.0-3.a.1.1, 136.2.0.?, 408.16.0.? |
$[ ]$ |
| 46546.c2 |
46546f1 |
46546.c |
46546f |
$2$ |
$3$ |
\( 2 \cdot 17 \cdot 37^{2} \) |
\( - 2^{3} \cdot 17 \cdot 37^{8} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$408$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$207792$ |
$1.500227$ |
$49247/136$ |
$0.74057$ |
$3.81641$ |
$[1, 0, 0, 11608, -933944]$ |
\(y^2+xy=x^3+11608x-933944\) |
3.8.0-3.a.1.2, 136.2.0.?, 408.16.0.? |
$[ ]$ |
| 46546.d1 |
46546e1 |
46546.d |
46546e |
$2$ |
$2$ |
\( 2 \cdot 17 \cdot 37^{2} \) |
\( 2^{16} \cdot 17 \cdot 37^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$5032$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$963072$ |
$2.281551$ |
$7052482298233/1525219328$ |
$0.90595$ |
$4.76823$ |
$[1, 0, 0, -546944, -123256832]$ |
\(y^2+xy=x^3-546944x-123256832\) |
2.3.0.a.1, 4.6.0.b.1, 34.6.0.a.1, 68.12.0.e.1, 136.24.0.?, $\ldots$ |
$[ ]$ |
| 46546.d2 |
46546e2 |
46546.d |
46546e |
$2$ |
$2$ |
\( 2 \cdot 17 \cdot 37^{2} \) |
\( - 2^{8} \cdot 17^{2} \cdot 37^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$5032$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1926144$ |
$2.628124$ |
$75488529485447/138657927424$ |
$0.93920$ |
$5.06104$ |
$[1, 0, 0, 1205376, -750937856]$ |
\(y^2+xy=x^3+1205376x-750937856\) |
2.3.0.a.1, 4.6.0.a.1, 68.12.0.d.1, 136.24.0.?, 296.12.0.?, $\ldots$ |
$[ ]$ |
| 46546.e1 |
46546d1 |
46546.e |
46546d |
$1$ |
$1$ |
\( 2 \cdot 17 \cdot 37^{2} \) |
\( - 2^{25} \cdot 17 \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5032$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1504800$ |
$2.485886$ |
$-28520791922377/21105737728$ |
$0.92281$ |
$4.97486$ |
$[1, 0, 0, -871397, -472700927]$ |
\(y^2+xy=x^3-871397x-472700927\) |
5032.2.0.? |
$[ ]$ |
| 46546.f1 |
46546c1 |
46546.f |
46546c |
$1$ |
$1$ |
\( 2 \cdot 17 \cdot 37^{2} \) |
\( - 2^{12} \cdot 17 \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2516$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$459648$ |
$1.750484$ |
$-8908363017/2576384$ |
$0.90844$ |
$4.18499$ |
$[1, -1, 1, -59124, -6761641]$ |
\(y^2+xy+y=x^3-x^2-59124x-6761641\) |
2516.2.0.? |
$[ ]$ |
| 46546.g1 |
46546g1 |
46546.g |
46546g |
$1$ |
$1$ |
\( 2 \cdot 17 \cdot 37^{2} \) |
\( - 2^{5} \cdot 17^{3} \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5032$ |
$2$ |
$0$ |
$0.549370735$ |
$1$ |
|
$0$ |
$410400$ |
$1.915949$ |
$-492477523273/5816992$ |
$0.87815$ |
$4.52247$ |
$[1, 1, 1, -225229, 41465827]$ |
\(y^2+xy+y=x^3+x^2-225229x+41465827\) |
5032.2.0.? |
$[(2281/3, 19838/3)]$ |