Learn more

Refine search


Results (29 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
462722.a1 462722.a \( 2 \cdot 13^{2} \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $1.000294524$ $[1, 0, 1, -7947, 273782]$ \(y^2+xy+y=x^3-7947x+273782\) 3.4.0.a.1, 4.2.0.a.1, 9.12.0.b.1, 12.16.0.b.1, 36.48.0.b.1, $\ldots$ $[(-25, 688)]$
462722.a2 462722.a \( 2 \cdot 13^{2} \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $3.000883573$ $[1, 0, 1, 23318, 1461852]$ \(y^2+xy+y=x^3+23318x+1461852\) 3.4.0.a.1, 4.2.0.a.1, 9.12.0.b.1, 12.16.0.b.2, 36.48.0.b.2, $\ldots$ $[(2261/5, 253869/5)]$
462722.b1 462722.b \( 2 \cdot 13^{2} \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -440846, 114360628]$ \(y^2+xy=x^3+x^2-440846x+114360628\) 3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.1, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$ $[ ]$
462722.b2 462722.b \( 2 \cdot 13^{2} \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 4079, -305443]$ \(y^2+xy=x^3+x^2+4079x-305443\) 3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.2, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$ $[ ]$
462722.c1 462722.c \( 2 \cdot 13^{2} \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $19.78935839$ $[1, -1, 0, 3195674, -950196012]$ \(y^2+xy=x^3-x^2+3195674x-950196012\) 296.2.0.? $[(11698296169/1681, 1360456454803189/1681)]$
462722.d1 462722.d \( 2 \cdot 13^{2} \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $14.43319907$ $[1, -1, 0, -89348726, -1119560271244]$ \(y^2+xy=x^3-x^2-89348726x-1119560271244\) 4.8.0.b.1, 52.16.0-4.b.1.1 $[(1770481852/19, 74479767582518/19)]$
462722.e1 462722.e \( 2 \cdot 13^{2} \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $13.50942637$ $[1, -1, 0, -73847539, 244278350967]$ \(y^2+xy=x^3-x^2-73847539x+244278350967\) 7.8.0.a.1, 56.16.0-7.a.1.6, 91.24.0.?, 259.16.0.?, 296.2.0.?, $\ldots$ $[(22582957/92, 199362507719/92)]$
462722.e2 462722.e \( 2 \cdot 13^{2} \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $94.56598462$ $[1, -1, 0, 148259021, 1256313832437]$ \(y^2+xy=x^3-x^2+148259021x+1256313832437\) 7.8.0.a.1, 56.16.0-7.a.1.8, 91.24.0.?, 259.16.0.?, 296.2.0.?, $\ldots$ $[(3721501281385665580467489400057522659773277/8540518911473888516, 7397841108626976939161091172580962012894656852012431723315841921/8540518911473888516)]$
462722.f1 462722.f \( 2 \cdot 13^{2} \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $54.02194516$ $[1, -1, 0, -90042809, -328966186899]$ \(y^2+xy=x^3-x^2-90042809x-328966186899\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.1, 91.24.0.?, 148.16.0.?, $\ldots$ $[(91519241786112230263001570/39501769439, 861453770054877041740509635071976146769/39501769439)]$
462722.f2 462722.f \( 2 \cdot 13^{2} \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $7.717420737$ $[1, -1, 0, 187981, 135581161]$ \(y^2+xy=x^3-x^2+187981x+135581161\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 148.16.0.?, $\ldots$ $[(-28404/11, 11947183/11)]$
462722.g1 462722.g \( 2 \cdot 13^{2} \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $27.28818283$ $[1, 0, 1, -106315200, -421939810290]$ \(y^2+xy+y=x^3-106315200x-421939810290\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 312.8.0.?, $\ldots$ $[(13855745344399/24810, 44589134017476553237/24810)]$
462722.g2 462722.g \( 2 \cdot 13^{2} \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $9.096060943$ $[1, 0, 1, -1045945, -820682588]$ \(y^2+xy+y=x^3-1045945x-820682588\) 3.12.0.a.1, 104.2.0.?, 117.36.0.?, 312.24.1.?, 888.24.0.?, $\ldots$ $[(769519/6, 671933059/6)]$
462722.g3 462722.g \( 2 \cdot 13^{2} \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $3.032020314$ $[1, 0, 1, 110860, 23322340]$ \(y^2+xy+y=x^3+110860x+23322340\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 312.8.0.?, $\ldots$ $[(118, 6109)]$
462722.h1 462722.h \( 2 \cdot 13^{2} \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $23.47820523$ $[1, 1, 0, -6598608, -16048732396]$ \(y^2+xy=x^3+x^2-6598608x-16048732396\) 4.2.0.a.1, 1924.4.0.? $[(265533262754/3611, 135129791217860032/3611)]$
462722.i1 462722.i \( 2 \cdot 13^{2} \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -49207593, -145760144877]$ \(y^2+xy+y=x^3-x^2-49207593x-145760144877\) 7.24.0.a.2, 104.2.0.?, 728.48.2.?, 2072.48.0.?, 3367.48.0.?, $\ldots$ $[ ]$
462722.i2 462722.i \( 2 \cdot 13^{2} \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -621783, 288799983]$ \(y^2+xy+y=x^3-x^2-621783x+288799983\) 7.24.0.a.1, 104.2.0.?, 728.48.2.?, 2072.48.0.?, 3367.48.0.?, $\ldots$ $[ ]$
462722.j1 462722.j \( 2 \cdot 13^{2} \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -10878787, 13900528641]$ \(y^2+xy=x^3-10878787x+13900528641\) 3.4.0.a.1, 4.2.0.a.1, 9.12.0.b.1, 12.16.0.b.1, 36.48.0.b.1, $\ldots$ $[ ]$
462722.j2 462722.j \( 2 \cdot 13^{2} \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, 31922998, 73951432996]$ \(y^2+xy=x^3+31922998x+73951432996\) 3.4.0.a.1, 4.2.0.a.1, 9.12.0.b.1, 12.16.0.b.2, 36.48.0.b.2, $\ldots$ $[ ]$
462722.k1 462722.k \( 2 \cdot 13^{2} \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $2.786132117$ $[1, 1, 1, -74503062, 251622814867]$ \(y^2+xy+y=x^3+x^2-74503062x+251622814867\) 3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.1, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$ $[(577, 456687)]$
462722.k2 462722.k \( 2 \cdot 13^{2} \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $13.93066058$ $[1, 1, 1, 689263, -674504745]$ \(y^2+xy+y=x^3+x^2+689263x-674504745\) 3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.2, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$ $[(82215373/49, 743681014924/49)]$
462722.l1 462722.l \( 2 \cdot 13^{2} \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -532798, -149611315]$ \(y^2+xy+y=x^3-x^2-532798x-149611315\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.1, 91.24.0.?, 364.384.21.?, $\ldots$ $[ ]$
462722.l2 462722.l \( 2 \cdot 13^{2} \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 1112, 61455]$ \(y^2+xy+y=x^3-x^2+1112x+61455\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$ $[ ]$
462722.m1 462722.m \( 2 \cdot 13^{2} \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -12480234123, 536642096372165]$ \(y^2+xy+y=x^3-x^2-12480234123x+536642096372165\) 7.8.0.a.1, 91.24.0.?, 296.2.0.?, 728.48.0.?, 2072.16.0.?, $\ldots$ $[ ]$
462722.m2 462722.m \( 2 \cdot 13^{2} \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 25055774517, 2760196657187675]$ \(y^2+xy+y=x^3-x^2+25055774517x+2760196657187675\) 7.8.0.a.1, 91.24.0.?, 296.2.0.?, 728.48.0.?, 2072.16.0.?, $\ldots$ $[ ]$
462722.n1 462722.n \( 2 \cdot 13^{2} \cdot 37^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -2009949, -990626347]$ \(y^2+xy+y=x^3-x^2-2009949x-990626347\) 2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.1, 962.6.0.?, 1924.24.0.?, $\ldots$ $[ ]$
462722.n2 462722.n \( 2 \cdot 13^{2} \cdot 37^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 2617271, -4886745587]$ \(y^2+xy+y=x^3-x^2+2617271x-4886745587\) 2.3.0.a.1, 4.12.0-4.a.1.2, 1924.24.0.?, 3848.48.0.? $[ ]$
462722.o1 462722.o \( 2 \cdot 13^{2} \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -65266, -22086671]$ \(y^2+xy+y=x^3-x^2-65266x-22086671\) 4.8.0.b.1, 1924.16.0.? $[ ]$
462722.p1 462722.p \( 2 \cdot 13^{2} \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 18909, -436861]$ \(y^2+xy+y=x^3-x^2+18909x-436861\) 296.2.0.? $[ ]$
462722.q1 462722.q \( 2 \cdot 13^{2} \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -4820, -318791]$ \(y^2+xy+y=x^3+x^2-4820x-318791\) 4.2.0.a.1, 52.4.0-4.a.1.1 $[ ]$
  displayed columns for results