Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
462722.a1 |
462722a1 |
462722.a |
462722a |
$2$ |
$3$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{6} \cdot 13^{6} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.2.0.1, 9.12.0.2 |
3B |
$17316$ |
$288$ |
$6$ |
$1.000294524$ |
$1$ |
|
$4$ |
$1327104$ |
$1.060801$ |
$-8398297/64$ |
$0.91223$ |
$2.95657$ |
$[1, 0, 1, -7947, 273782]$ |
\(y^2+xy+y=x^3-7947x+273782\) |
3.4.0.a.1, 4.2.0.a.1, 9.12.0.b.1, 12.16.0.b.1, 36.48.0.b.1, $\ldots$ |
$[(-25, 688)]$ |
462722.a2 |
462722a2 |
462722.a |
462722a |
$2$ |
$3$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{18} \cdot 13^{6} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.2.0.1, 9.12.0.2 |
3B |
$17316$ |
$288$ |
$6$ |
$3.000883573$ |
$1$ |
|
$0$ |
$3981312$ |
$1.610107$ |
$212207543/262144$ |
$0.98476$ |
$3.21282$ |
$[1, 0, 1, 23318, 1461852]$ |
\(y^2+xy+y=x^3+23318x+1461852\) |
3.4.0.a.1, 4.2.0.a.1, 9.12.0.b.1, 12.16.0.b.2, 36.48.0.b.2, $\ldots$ |
$[(2261/5, 253869/5)]$ |
462722.b1 |
462722b2 |
462722.b |
462722b |
$2$ |
$5$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{15} \cdot 13^{3} \cdot 37^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3, 5$ |
3.6.0.1, 5.6.0.1 |
3Ns, 5B |
$57720$ |
$576$ |
$17$ |
$1$ |
$1$ |
|
$0$ |
$6199200$ |
$2.106602$ |
$-1680914269/32768$ |
$1.02322$ |
$3.88168$ |
$[1, 1, 0, -440846, 114360628]$ |
\(y^2+xy=x^3+x^2-440846x+114360628\) |
3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.1, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$ |
$[ ]$ |
462722.b2 |
462722b1 |
462722.b |
462722b |
$2$ |
$5$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{3} \cdot 13^{3} \cdot 37^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3, 5$ |
3.6.0.1, 5.6.0.1 |
3Ns, 5B |
$57720$ |
$576$ |
$17$ |
$1$ |
$1$ |
|
$0$ |
$1239840$ |
$1.301882$ |
$1331/8$ |
$0.93577$ |
$2.97383$ |
$[1, 1, 0, 4079, -305443]$ |
\(y^2+xy=x^3+x^2+4079x-305443\) |
3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.2, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$ |
$[ ]$ |
462722.c1 |
462722c1 |
462722.c |
462722c |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{5} \cdot 13^{8} \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$296$ |
$2$ |
$0$ |
$19.78935839$ |
$1$ |
|
$0$ |
$17072640$ |
$2.793755$ |
$1724463/1184$ |
$0.88144$ |
$4.33469$ |
$[1, -1, 0, 3195674, -950196012]$ |
\(y^2+xy=x^3-x^2+3195674x-950196012\) |
296.2.0.? |
$[(11698296169/1681, 1360456454803189/1681)]$ |
462722.d1 |
462722d1 |
462722.d |
462722d |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{10} \cdot 13^{10} \cdot 37^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$52$ |
$16$ |
$0$ |
$14.43319907$ |
$1$ |
|
$0$ |
$143216640$ |
$3.805931$ |
$-4652805537/29246464$ |
$0.96757$ |
$5.29028$ |
$[1, -1, 0, -89348726, -1119560271244]$ |
\(y^2+xy=x^3-x^2-89348726x-1119560271244\) |
4.8.0.b.1, 52.16.0-4.b.1.1 |
$[(1770481852/19, 74479767582518/19)]$ |
462722.e1 |
462722e1 |
462722.e |
462722e |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2 \cdot 13^{4} \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$26936$ |
$96$ |
$2$ |
$13.50942637$ |
$1$ |
|
$0$ |
$23901696$ |
$2.882050$ |
$-607782291676209/74$ |
$1.05537$ |
$5.05686$ |
$[1, -1, 0, -73847539, 244278350967]$ |
\(y^2+xy=x^3-x^2-73847539x+244278350967\) |
7.8.0.a.1, 56.16.0-7.a.1.6, 91.24.0.?, 259.16.0.?, 296.2.0.?, $\ldots$ |
$[(22582957/92, 199362507719/92)]$ |
462722.e2 |
462722e2 |
462722.e |
462722e |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{7} \cdot 13^{4} \cdot 37^{13} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$26936$ |
$96$ |
$2$ |
$94.56598462$ |
$1$ |
|
$0$ |
$167311872$ |
$3.855003$ |
$4918167786495951/12151280273024$ |
$1.12906$ |
$5.30795$ |
$[1, -1, 0, 148259021, 1256313832437]$ |
\(y^2+xy=x^3-x^2+148259021x+1256313832437\) |
7.8.0.a.1, 56.16.0-7.a.1.8, 91.24.0.?, 259.16.0.?, 296.2.0.?, $\ldots$ |
$[(3721501281385665580467489400057522659773277/8540518911473888516, 7397841108626976939161091172580962012894656852012431723315841921/8540518911473888516)]$ |
462722.f1 |
462722f2 |
462722.f |
462722f |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{14} \cdot 13^{8} \cdot 37^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$13468$ |
$768$ |
$21$ |
$54.02194516$ |
$1$ |
|
$0$ |
$56412720$ |
$3.284863$ |
$-38575685889/16384$ |
$1.08547$ |
$5.10252$ |
$[1, -1, 0, -90042809, -328966186899]$ |
\(y^2+xy=x^3-x^2-90042809x-328966186899\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.1, 91.24.0.?, 148.16.0.?, $\ldots$ |
$[(91519241786112230263001570/39501769439, 861453770054877041740509635071976146769/39501769439)]$ |
462722.f2 |
462722f1 |
462722.f |
462722f |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{2} \cdot 13^{8} \cdot 37^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$13468$ |
$768$ |
$21$ |
$7.717420737$ |
$1$ |
|
$0$ |
$8058960$ |
$2.311905$ |
$351/4$ |
$1.27279$ |
$3.90759$ |
$[1, -1, 0, 187981, 135581161]$ |
\(y^2+xy=x^3-x^2+187981x+135581161\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 148.16.0.?, $\ldots$ |
$[(-28404/11, 11947183/11)]$ |
462722.g1 |
462722g3 |
462722.g |
462722g |
$3$ |
$9$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{9} \cdot 13^{7} \cdot 37^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$34632$ |
$144$ |
$3$ |
$27.28818283$ |
$1$ |
|
$0$ |
$50621760$ |
$3.142319$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.14066$ |
$[1, 0, 1, -106315200, -421939810290]$ |
\(y^2+xy+y=x^3-106315200x-421939810290\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 312.8.0.?, $\ldots$ |
$[(13855745344399/24810, 44589134017476553237/24810)]$ |
462722.g2 |
462722g2 |
462722.g |
462722g |
$3$ |
$9$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{3} \cdot 13^{9} \cdot 37^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$34632$ |
$144$ |
$3$ |
$9.096060943$ |
$1$ |
|
$0$ |
$16873920$ |
$2.593014$ |
$-10218313/17576$ |
$0.94717$ |
$4.18357$ |
$[1, 0, 1, -1045945, -820682588]$ |
\(y^2+xy+y=x^3-1045945x-820682588\) |
3.12.0.a.1, 104.2.0.?, 117.36.0.?, 312.24.1.?, 888.24.0.?, $\ldots$ |
$[(769519/6, 671933059/6)]$ |
462722.g3 |
462722g1 |
462722.g |
462722g |
$3$ |
$9$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2 \cdot 13^{7} \cdot 37^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$34632$ |
$144$ |
$3$ |
$3.032020314$ |
$1$ |
|
$2$ |
$5624640$ |
$2.043709$ |
$12167/26$ |
$0.84415$ |
$3.63761$ |
$[1, 0, 1, 110860, 23322340]$ |
\(y^2+xy+y=x^3+110860x+23322340\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 312.8.0.?, $\ldots$ |
$[(118, 6109)]$ |
462722.h1 |
462722h1 |
462722.h |
462722h |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{2} \cdot 13^{6} \cdot 37^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.2.0.1 |
|
$1924$ |
$4$ |
$0$ |
$23.47820523$ |
$1$ |
|
$0$ |
$40919040$ |
$3.094051$ |
$-1369/4$ |
$0.91004$ |
$4.63941$ |
$[1, 1, 0, -6598608, -16048732396]$ |
\(y^2+xy=x^3+x^2-6598608x-16048732396\) |
4.2.0.a.1, 1924.4.0.? |
$[(265533262754/3611, 135129791217860032/3611)]$ |
462722.i1 |
462722i2 |
462722.i |
462722i |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2 \cdot 13^{13} \cdot 37^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$26936$ |
$96$ |
$2$ |
$1$ |
$49$ |
$7$ |
$0$ |
$121504320$ |
$3.377728$ |
$-1064019559329/125497034$ |
$1.06269$ |
$4.97772$ |
$[1, -1, 1, -49207593, -145760144877]$ |
\(y^2+xy+y=x^3-x^2-49207593x-145760144877\) |
7.24.0.a.2, 104.2.0.?, 728.48.2.?, 2072.48.0.?, 3367.48.0.?, $\ldots$ |
$[ ]$ |
462722.i2 |
462722i1 |
462722.i |
462722i |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{7} \cdot 13^{7} \cdot 37^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.1 |
7B.6.1 |
$26936$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$17357760$ |
$2.404774$ |
$-2146689/1664$ |
$0.96784$ |
$4.02338$ |
$[1, -1, 1, -621783, 288799983]$ |
\(y^2+xy+y=x^3-x^2-621783x+288799983\) |
7.24.0.a.1, 104.2.0.?, 728.48.2.?, 2072.48.0.?, 3367.48.0.?, $\ldots$ |
$[ ]$ |
462722.j1 |
462722j1 |
462722.j |
462722j |
$2$ |
$3$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{6} \cdot 13^{6} \cdot 37^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.2.0.1, 9.12.0.2 |
3B |
$17316$ |
$288$ |
$6$ |
$1$ |
$1$ |
|
$0$ |
$49102848$ |
$2.866261$ |
$-8398297/64$ |
$0.91223$ |
$4.61742$ |
$[1, 0, 0, -10878787, 13900528641]$ |
\(y^2+xy=x^3-10878787x+13900528641\) |
3.4.0.a.1, 4.2.0.a.1, 9.12.0.b.1, 12.16.0.b.1, 36.48.0.b.1, $\ldots$ |
$[ ]$ |
462722.j2 |
462722j2 |
462722.j |
462722j |
$2$ |
$3$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{18} \cdot 13^{6} \cdot 37^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.2.0.1, 9.12.0.2 |
3B |
$17316$ |
$288$ |
$6$ |
$1$ |
$1$ |
|
$0$ |
$147308544$ |
$3.415565$ |
$212207543/262144$ |
$0.98476$ |
$4.87367$ |
$[1, 0, 0, 31922998, 73951432996]$ |
\(y^2+xy=x^3+31922998x+73951432996\) |
3.4.0.a.1, 4.2.0.a.1, 9.12.0.b.1, 12.16.0.b.2, 36.48.0.b.2, $\ldots$ |
$[ ]$ |
462722.k1 |
462722k2 |
462722.k |
462722k |
$2$ |
$5$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{15} \cdot 13^{9} \cdot 37^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3, 5$ |
3.6.0.1, 5.6.0.1 |
3Ns, 5B |
$57720$ |
$576$ |
$17$ |
$2.786132117$ |
$1$ |
|
$2$ |
$80589600$ |
$3.389076$ |
$-1680914269/32768$ |
$1.02322$ |
$5.06143$ |
$[1, 1, 1, -74503062, 251622814867]$ |
\(y^2+xy+y=x^3+x^2-74503062x+251622814867\) |
3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.1, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$ |
$[(577, 456687)]$ |
462722.k2 |
462722k1 |
462722.k |
462722k |
$2$ |
$5$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{3} \cdot 13^{9} \cdot 37^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3, 5$ |
3.6.0.1, 5.6.0.1 |
3Ns, 5B |
$57720$ |
$576$ |
$17$ |
$13.93066058$ |
$1$ |
|
$0$ |
$16117920$ |
$2.584354$ |
$1331/8$ |
$0.93577$ |
$4.15358$ |
$[1, 1, 1, 689263, -674504745]$ |
\(y^2+xy+y=x^3+x^2+689263x-674504745\) |
3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.2, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$ |
$[(82215373/49, 743681014924/49)]$ |
462722.l1 |
462722l2 |
462722.l |
462722l |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{14} \cdot 13^{2} \cdot 37^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$13468$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$4339440$ |
$2.002388$ |
$-38575685889/16384$ |
$1.08547$ |
$3.92277$ |
$[1, -1, 1, -532798, -149611315]$ |
\(y^2+xy+y=x^3-x^2-532798x-149611315\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.1, 91.24.0.?, 364.384.21.?, $\ldots$ |
$[ ]$ |
462722.l2 |
462722l1 |
462722.l |
462722l |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{2} \cdot 13^{2} \cdot 37^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$13468$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$619920$ |
$1.029430$ |
$351/4$ |
$1.27279$ |
$2.72784$ |
$[1, -1, 1, 1112, 61455]$ |
\(y^2+xy+y=x^3-x^2+1112x+61455\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$ |
$[ ]$ |
462722.m1 |
462722m1 |
462722.m |
462722m |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2 \cdot 13^{10} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$26936$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$310722048$ |
$4.164520$ |
$-607782291676209/74$ |
$1.05537$ |
$6.23661$ |
$[1, -1, 1, -12480234123, 536642096372165]$ |
\(y^2+xy+y=x^3-x^2-12480234123x+536642096372165\) |
7.8.0.a.1, 91.24.0.?, 296.2.0.?, 728.48.0.?, 2072.16.0.?, $\ldots$ |
$[ ]$ |
462722.m2 |
462722m2 |
462722.m |
462722m |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{7} \cdot 13^{10} \cdot 37^{13} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$26936$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$2175054336$ |
$5.137474$ |
$4918167786495951/12151280273024$ |
$1.12906$ |
$6.48770$ |
$[1, -1, 1, 25055774517, 2760196657187675]$ |
\(y^2+xy+y=x^3-x^2+25055774517x+2760196657187675\) |
7.8.0.a.1, 91.24.0.?, 296.2.0.?, 728.48.0.?, 2072.16.0.?, $\ldots$ |
$[ ]$ |
462722.n1 |
462722n1 |
462722.n |
462722n |
$2$ |
$2$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( 2^{4} \cdot 13^{7} \cdot 37^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.23 |
2B |
$3848$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$14708736$ |
$2.568161$ |
$72511713/7696$ |
$0.84804$ |
$4.22805$ |
$[1, -1, 1, -2009949, -990626347]$ |
\(y^2+xy+y=x^3-x^2-2009949x-990626347\) |
2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.1, 962.6.0.?, 1924.24.0.?, $\ldots$ |
$[ ]$ |
462722.n2 |
462722n2 |
462722.n |
462722n |
$2$ |
$2$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{2} \cdot 13^{8} \cdot 37^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.6 |
2B |
$3848$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$29417472$ |
$2.914734$ |
$160103007/925444$ |
$0.87670$ |
$4.45711$ |
$[1, -1, 1, 2617271, -4886745587]$ |
\(y^2+xy+y=x^3-x^2+2617271x-4886745587\) |
2.3.0.a.1, 4.12.0-4.a.1.2, 1924.24.0.?, 3848.48.0.? |
$[ ]$ |
462722.o1 |
462722o1 |
462722.o |
462722o |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{10} \cdot 13^{10} \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$1924$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3870720$ |
$2.000473$ |
$-4652805537/29246464$ |
$0.96757$ |
$3.62944$ |
$[1, -1, 1, -65266, -22086671]$ |
\(y^2+xy+y=x^3-x^2-65266x-22086671\) |
4.8.0.b.1, 1924.16.0.? |
$[ ]$ |
462722.p1 |
462722p1 |
462722.p |
462722p |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{5} \cdot 13^{2} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$296$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1313280$ |
$1.511282$ |
$1724463/1184$ |
$0.88144$ |
$3.15494$ |
$[1, -1, 1, 18909, -436861]$ |
\(y^2+xy+y=x^3-x^2+18909x-436861\) |
296.2.0.? |
$[ ]$ |
462722.q1 |
462722q1 |
462722.q |
462722q |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{2} \cdot 13^{6} \cdot 37^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.2.0.1 |
|
$52$ |
$4$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1105920$ |
$1.288593$ |
$-1369/4$ |
$0.91004$ |
$2.97857$ |
$[1, 1, 1, -4820, -318791]$ |
\(y^2+xy+y=x^3+x^2-4820x-318791\) |
4.2.0.a.1, 52.4.0-4.a.1.1 |
$[ ]$ |