Learn more

Refine search


Results (1-50 of 97 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
462550.a1 462550.a \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $5.770418245$ $[1, -1, 0, 38108, -3214394]$ \(y^2+xy=x^3-x^2+38108x-3214394\) 2552.2.0.? $[(183, 3049)]$
462550.b1 462550.b \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $3.694937889$ $[1, -1, 0, 1133, -16709]$ \(y^2+xy=x^3-x^2+1133x-16709\) 2552.2.0.? $[(13, 3)]$
462550.c1 462550.c \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -660448251, -7361649212602]$ \(y^2+xy+y=x^3-660448251x-7361649212602\) 12760.2.0.? $[ ]$
462550.d1 462550.d \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $1$ $\Z/2\Z$ $10.71763642$ $[1, 0, 1, -2178978876, -38742679060102]$ \(y^2+xy+y=x^3-2178978876x-38742679060102\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 10.6.0.a.1, 30.24.0.a.1, $\ldots$ $[(-360542807/117, -962356953797/117)]$
462550.d2 462550.d \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $1$ $\Z/2\Z$ $3.572545475$ $[1, 0, 1, -207359501, 1121047878648]$ \(y^2+xy+y=x^3-207359501x+1121047878648\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 10.6.0.a.1, 30.24.0.a.1, $\ldots$ $[(184887, 79171806)]$
462550.d3 462550.d \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $1$ $\Z/2\Z$ $21.43527285$ $[1, 0, 1, -26018876, -1556753940102]$ \(y^2+xy+y=x^3-26018876x-1556753940102\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 20.6.0.c.1, 60.24.0.q.1, $\ldots$ $[(7723457677/556, 626762838184061/556)]$
462550.d4 462550.d \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $1$ $\Z/2\Z$ $7.145090950$ $[1, 0, 1, 2890499, 57603378648]$ \(y^2+xy+y=x^3+2890499x+57603378648\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 20.6.0.c.1, 60.24.0.q.1, $\ldots$ $[(-2768, 169896)]$
462550.e1 462550.e \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $2$ $\Z/2\Z$ $3.036073499$ $[1, 0, 1, -2218576, 1271222298]$ \(y^2+xy+y=x^3-2218576x+1271222298\) 2.3.0.a.1, 10.6.0.a.1, 44.6.0.d.1, 220.12.0.? $[(766, 4242), (911, 2067)]$
462550.e2 462550.e \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $2$ $\Z/2\Z$ $12.14429399$ $[1, 0, 1, -116076, 26542298]$ \(y^2+xy+y=x^3-116076x+26542298\) 2.3.0.a.1, 20.6.0.c.1, 44.6.0.d.1, 110.6.0.?, 220.12.0.? $[(77, 4211), (702, 16711)]$
462550.f1 462550.f \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $2$ $\mathsf{trivial}$ $11.04909650$ $[1, 0, 1, -12731076, 104806732298]$ \(y^2+xy+y=x^3-12731076x+104806732298\) 232.2.0.? $[(-2598, 348211), (39452, 7791061)]$
462550.g1 462550.g \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -4321076, -3459402702]$ \(y^2+xy+y=x^3-4321076x-3459402702\) 88.2.0.? $[ ]$
462550.h1 462550.h \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -20258026, -35845766052]$ \(y^2+xy+y=x^3-20258026x-35845766052\) 3.4.0.a.1, 264.8.0.?, 435.8.0.?, 12760.2.0.?, 38280.16.0.? $[ ]$
462550.h2 462550.h \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 1082349, -207339802]$ \(y^2+xy+y=x^3+1082349x-207339802\) 3.4.0.a.1, 264.8.0.?, 435.8.0.?, 12760.2.0.?, 38280.16.0.? $[ ]$
462550.i1 462550.i \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -19361, -1202292]$ \(y^2+xy+y=x^3-19361x-1202292\) 3.4.0.a.1, 88.2.0.?, 264.8.0.?, 435.8.0.?, 38280.16.0.? $[ ]$
462550.i2 462550.i \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 1664, 8748]$ \(y^2+xy+y=x^3+1664x+8748\) 3.4.0.a.1, 88.2.0.?, 264.8.0.?, 435.8.0.?, 38280.16.0.? $[ ]$
462550.j1 462550.j \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -1091061275, -19219390539875]$ \(y^2+xy=x^3+x^2-1091061275x-19219390539875\) 22.2.0.a.1 $[ ]$
462550.k1 462550.k \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -5855900, 5631352000]$ \(y^2+xy=x^3+x^2-5855900x+5631352000\) 22.2.0.a.1 $[ ]$
462550.l1 462550.l \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $1.360451040$ $[1, -1, 0, 4468, 2647376]$ \(y^2+xy=x^3-x^2+4468x+2647376\) 12760.2.0.? $[(109, 2048)]$
462550.m1 462550.m \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $19.89437423$ $[1, -1, 0, -118492, -17137584]$ \(y^2+xy=x^3-x^2-118492x-17137584\) 8.2.0.a.1 $[(1030430925/1436, 19827025720701/1436)]$
462550.n1 462550.n \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $1$ $\Z/2\Z$ $16.60172329$ $[1, -1, 0, -773167, -261479259]$ \(y^2+xy=x^3-x^2-773167x-261479259\) 2.3.0.a.1, 88.6.0.?, 232.6.0.?, 1276.6.0.?, 2552.12.0.? $[(58292181/212, 282236815839/212)]$
462550.n2 462550.n \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $1$ $\Z/2\Z$ $8.300861649$ $[1, -1, 0, -48167, -4104259]$ \(y^2+xy=x^3-x^2-48167x-4104259\) 2.3.0.a.1, 88.6.0.?, 232.6.0.?, 638.6.0.?, 2552.12.0.? $[(18109/4, 2350107/4)]$
462550.o1 462550.o \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $9.784865791$ $[1, -1, 0, 174419458, -281511051884]$ \(y^2+xy=x^3-x^2+174419458x-281511051884\) 12760.2.0.? $[(3060429/31, 16438612763/31)]$
462550.p1 462550.p \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -3986077, -3348531579]$ \(y^2+xy=x^3-x^2-3986077x-3348531579\) 8.2.0.a.1 $[ ]$
462550.q1 462550.q \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -43567742, 100670296916]$ \(y^2+xy=x^3-x^2-43567742x+100670296916\) 2.3.0.a.1, 10.6.0.a.1, 116.6.0.?, 580.12.0.? $[ ]$
462550.q2 462550.q \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -9927742, -10308063084]$ \(y^2+xy=x^3-x^2-9927742x-10308063084\) 2.3.0.a.1, 20.6.0.c.1, 116.6.0.?, 290.6.0.?, 580.12.0.? $[ ]$
462550.r1 462550.r \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -3160247042, -68380526760884]$ \(y^2+xy=x^3-x^2-3160247042x-68380526760884\) 12760.2.0.? $[ ]$
462550.s1 462550.s \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $1.076670056$ $[1, -1, 0, -3313277, 2597094531]$ \(y^2+xy=x^3-x^2-3313277x+2597094531\) 12760.2.0.? $[(39841/3, 7317911/3)]$
462550.t1 462550.t \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $5.781992866$ $[1, 0, 1, -1861151, 986459698]$ \(y^2+xy+y=x^3-1861151x+986459698\) 3.4.0.a.1, 435.8.0.?, 440.2.0.?, 1320.8.0.?, 7656.8.0.?, $\ldots$ $[(3463/2, 35933/2)]$
462550.t2 462550.t \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $17.34597859$ $[1, 0, 1, 6233474, 5114718448]$ \(y^2+xy+y=x^3+6233474x+5114718448\) 3.4.0.a.1, 435.8.0.?, 440.2.0.?, 1320.8.0.?, 7656.8.0.?, $\ldots$ $[(-24111617/438, 5534037323287/438)]$
462550.u1 462550.u \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $2$ $\mathsf{trivial}$ $10.50805369$ $[1, 0, 1, -18660126, 31031647248]$ \(y^2+xy+y=x^3-18660126x+31031647248\) 2552.2.0.? $[(1752, 60096), (22258/3, 55532/3)]$
462550.v1 462550.v \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $8.546407263$ $[1, 0, 1, -6457216, 6315489838]$ \(y^2+xy+y=x^3-6457216x+6315489838\) 5.12.0.a.1, 145.24.0.?, 440.24.0.?, 2552.2.0.?, 12760.48.1.? $[(23213/4, 33473/4)]$
462550.v2 462550.v \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $42.73203631$ $[1, 0, 1, 34154674, 12846325798]$ \(y^2+xy+y=x^3+34154674x+12846325798\) 5.12.0.a.2, 145.24.0.?, 440.24.0.?, 2552.2.0.?, 12760.48.1.? $[(-85537019622651779/24601180, 1334123688874691007754859079/24601180)]$
462550.w1 462550.w \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 5724, 23137698]$ \(y^2+xy+y=x^3+5724x+23137698\) 22.2.0.a.1 $[ ]$
462550.x1 462550.x \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $2$ $\mathsf{trivial}$ $5.046679404$ $[1, 0, 1, -10951, -1547102]$ \(y^2+xy+y=x^3-10951x-1547102\) 2552.2.0.? $[(1558/3, 33392/3), (599/2, 2761/2)]$
462550.y1 462550.y \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -368376, -4092171102]$ \(y^2+xy+y=x^3-368376x-4092171102\) 22.2.0.a.1 $[ ]$
462550.z1 462550.z \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -132068976, 584177825598]$ \(y^2+xy+y=x^3-132068976x+584177825598\) 22.2.0.a.1 $[ ]$
462550.ba1 462550.ba \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -25505866, 49578708028]$ \(y^2+xy+y=x^3-25505866x+49578708028\) 5.12.0.a.1, 25.60.0.a.1, 145.24.0.?, 275.300.12.?, 440.24.1.?, $\ldots$ $[ ]$
462550.ba2 462550.ba \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -23566, -1395722]$ \(y^2+xy+y=x^3-23566x-1395722\) 5.12.0.a.2, 25.60.0.a.2, 145.24.0.?, 275.300.12.?, 440.24.1.?, $\ldots$ $[ ]$
462550.ba3 462550.ba \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 165659, 14625328]$ \(y^2+xy+y=x^3+165659x+14625328\) 5.60.0.a.1, 145.120.0.?, 275.300.12.?, 440.120.5.?, 2200.600.37.?, $\ldots$ $[ ]$
462550.bb1 462550.bb \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -554701, 159007048]$ \(y^2+xy+y=x^3-554701x+159007048\) 2552.2.0.? $[ ]$
462550.bc1 462550.bc \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -578626, 172817428]$ \(y^2+xy+y=x^3-578626x+172817428\) 3.4.0.a.1, 435.8.0.?, 1320.8.0.?, 2552.2.0.?, 7656.8.0.?, $\ldots$ $[ ]$
462550.bc2 462550.bc \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 2469999, 744495588]$ \(y^2+xy+y=x^3+2469999x+744495588\) 3.4.0.a.1, 435.8.0.?, 1320.8.0.?, 2552.2.0.?, 7656.8.0.?, $\ldots$ $[ ]$
462550.bd1 462550.bd \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -9501, 678648]$ \(y^2+xy+y=x^3-9501x+678648\) 3.4.0.a.1, 22.2.0.a.1, 66.8.0.a.1, 435.8.0.?, 9570.16.0.? $[ ]$
462550.bd2 462550.bd \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 81124, -13640102]$ \(y^2+xy+y=x^3+81124x-13640102\) 3.4.0.a.1, 22.2.0.a.1, 66.8.0.a.1, 435.8.0.?, 9570.16.0.? $[ ]$
462550.be1 462550.be \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $2.870010354$ $[1, 1, 0, -578625, 357041525]$ \(y^2+xy=x^3+x^2-578625x+357041525\) 232.2.0.? $[(-955, 6785)]$
462550.bf1 462550.bf \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $7.687512158$ $[1, 1, 0, -141214850, -645963463750]$ \(y^2+xy=x^3+x^2-141214850x-645963463750\) 8.2.0.b.1 $[(-93963275/117, 6285846250/117)]$
462550.bg1 462550.bg \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $3.851282566$ $[1, 1, 0, -12400, 480000]$ \(y^2+xy=x^3+x^2-12400x+480000\) 8.2.0.b.1 $[(-69, 1041)]$
462550.bh1 462550.bh \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $16.60451323$ $[1, -1, 0, -12352, 2041856]$ \(y^2+xy=x^3-x^2-12352x+2041856\) 440.2.0.? $[(-9063581/411, 112683945238/411)]$
462550.bi1 462550.bi \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -308805, 254923197]$ \(y^2+xy+y=x^3-x^2-308805x+254923197\) 440.2.0.? $[ ]$
462550.bj1 462550.bj \( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -167913, -26497433]$ \(y^2+xy=x^3-167913x-26497433\) 8.2.0.b.1 $[ ]$
Next   displayed columns for results