| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 454854.a1 |
454854a2 |
454854.a |
454854a |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 41^{6} \cdot 43^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$7052$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$170311680$ |
$3.614208$ |
$40648574705672938753/4235420946279168$ |
$0.96491$ |
$5.19804$ |
$[1, 1, 0, -132447606, -531315978156]$ |
\(y^2+xy=x^3+x^2-132447606x-531315978156\) |
2.3.0.a.1, 164.6.0.?, 172.6.0.?, 7052.12.0.? |
$[ ]$ |
| 454854.a2 |
454854a1 |
454854.a |
454854a |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( 2^{16} \cdot 3^{2} \cdot 41^{3} \cdot 43^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$7052$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$85155840$ |
$3.267635$ |
$505151404935443713/75164179562496$ |
$0.98277$ |
$4.86123$ |
$[1, 1, 0, -30678646, 56359058260]$ |
\(y^2+xy=x^3+x^2-30678646x+56359058260\) |
2.3.0.a.1, 82.6.0.?, 172.6.0.?, 7052.12.0.? |
$[ ]$ |
| 454854.b1 |
454854b1 |
454854.b |
454854b |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( - 2^{15} \cdot 3^{6} \cdot 41^{5} \cdot 43^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$328$ |
$2$ |
$0$ |
$3.902511780$ |
$1$ |
|
$0$ |
$13759200$ |
$2.298145$ |
$-6702384370794891073/2767558099894272$ |
$0.98832$ |
$3.94619$ |
$[1, 1, 0, -482111, -168862011]$ |
\(y^2+xy=x^3+x^2-482111x-168862011\) |
328.2.0.? |
$[(3311/2, -1097/2)]$ |
| 454854.c1 |
454854c2 |
454854.c |
454854c |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( - 2^{5} \cdot 3 \cdot 41^{5} \cdot 43^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$211560$ |
$48$ |
$1$ |
$2.716240744$ |
$1$ |
|
$4$ |
$120960000$ |
$3.575680$ |
$-21525971829968662032241/11122195296$ |
$1.06339$ |
$5.67948$ |
$[1, 1, 0, -1071560253, 13500773335581]$ |
\(y^2+xy=x^3+x^2-1071560253x+13500773335581\) |
5.12.0.a.2, 215.24.0.?, 984.2.0.?, 4920.24.1.?, 211560.48.1.? |
$[(-37027, 1572598)]$ |
| 454854.c2 |
454854c1 |
454854.c |
454854c |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( - 2^{25} \cdot 3^{5} \cdot 41 \cdot 43^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$211560$ |
$48$ |
$1$ |
$13.58120372$ |
$1$ |
|
$0$ |
$24192000$ |
$2.770962$ |
$-592915705201/334302806016$ |
$1.07782$ |
$4.34137$ |
$[1, 1, 0, -323613, 2212737021]$ |
\(y^2+xy=x^3+x^2-323613x+2212737021\) |
5.12.0.a.1, 215.24.0.?, 984.2.0.?, 4920.24.1.?, 211560.48.1.? |
$[(-19817107/121, 24520038229/121)]$ |
| 454854.d1 |
454854d3 |
454854.d |
454854d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( 2 \cdot 3^{8} \cdot 41 \cdot 43^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$14104$ |
$48$ |
$0$ |
$11.52025497$ |
$1$ |
|
$0$ |
$7741440$ |
$2.043743$ |
$9357915116017/538002$ |
$0.98265$ |
$4.02483$ |
$[1, 1, 0, -811749, 281149587]$ |
\(y^2+xy=x^3+x^2-811749x+281149587\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 328.24.0.?, 344.24.0.?, $\ldots$ |
$[(3842661/85, 122199879/85)]$ |
| 454854.d2 |
454854d2 |
454854.d |
454854d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( 2^{2} \cdot 3^{4} \cdot 41^{2} \cdot 43^{6} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.4 |
2Cs |
$14104$ |
$48$ |
$0$ |
$5.760127486$ |
$1$ |
|
$2$ |
$3870720$ |
$1.697168$ |
$2703045457/544644$ |
$0.99714$ |
$3.39928$ |
$[1, 1, 0, -53659, 3840265]$ |
\(y^2+xy=x^3+x^2-53659x+3840265\) |
2.6.0.a.1, 8.12.0.b.1, 164.12.0.?, 172.12.0.?, 328.24.0.?, $\ldots$ |
$[(13165/3, 1473320/3)]$ |
| 454854.d3 |
454854d1 |
454854.d |
454854d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 41 \cdot 43^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$14104$ |
$48$ |
$0$ |
$2.880063743$ |
$1$ |
|
$3$ |
$1935360$ |
$1.350595$ |
$81182737/5904$ |
$0.95826$ |
$3.13020$ |
$[1, 1, 0, -16679, -782235]$ |
\(y^2+xy=x^3+x^2-16679x-782235\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 82.6.0.?, 164.12.0.?, $\ldots$ |
$[(1458, 54741)]$ |
| 454854.d4 |
454854d4 |
454854.d |
454854d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( - 2 \cdot 3^{2} \cdot 41^{4} \cdot 43^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.16 |
2B |
$14104$ |
$48$ |
$0$ |
$2.880063743$ |
$1$ |
|
$2$ |
$7741440$ |
$2.043743$ |
$25076571983/50863698$ |
$0.97224$ |
$3.64075$ |
$[1, 1, 0, 112751, 23110543]$ |
\(y^2+xy=x^3+x^2+112751x+23110543\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 172.12.0.?, 328.24.0.?, $\ldots$ |
$[(91, 5797)]$ |
| 454854.e1 |
454854e1 |
454854.e |
454854e |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( 2^{6} \cdot 3^{3} \cdot 41 \cdot 43^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$42312$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$6918912$ |
$2.226143$ |
$106989222612817/3046464$ |
$0.89271$ |
$4.21186$ |
$[1, 1, 0, -1828699, -952573475]$ |
\(y^2+xy=x^3+x^2-1828699x-952573475\) |
2.3.0.a.1, 8.6.0.d.1, 10578.6.0.?, 42312.12.0.? |
$[ ]$ |
| 454854.e2 |
454854e2 |
454854.e |
454854e |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( - 2^{3} \cdot 3^{6} \cdot 41^{2} \cdot 43^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$42312$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$13837824$ |
$2.572720$ |
$-94525928327377/18126841608$ |
$0.89620$ |
$4.22432$ |
$[1, 1, 0, -1754739, -1033056747]$ |
\(y^2+xy=x^3+x^2-1754739x-1033056747\) |
2.3.0.a.1, 8.6.0.a.1, 21156.6.0.?, 42312.12.0.? |
$[ ]$ |
| 454854.f1 |
454854f1 |
454854.f |
454854f |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( - 2^{5} \cdot 3 \cdot 41 \cdot 43^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$984$ |
$2$ |
$0$ |
$45.51420827$ |
$1$ |
|
$0$ |
$17149440$ |
$2.536446$ |
$-40767965189713/13456400736$ |
$0.89278$ |
$4.17244$ |
$[1, 1, 0, -1325771, -736846947]$ |
\(y^2+xy=x^3+x^2-1325771x-736846947\) |
984.2.0.? |
$[(1663019610582310593337/1100629711, 6714445717004841097364525863037/1100629711)]$ |
| 454854.g1 |
454854g1 |
454854.g |
454854g |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( - 2^{2} \cdot 3 \cdot 41 \cdot 43^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$246$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8553216$ |
$1.988295$ |
$-1244181049/492$ |
$0.82241$ |
$3.91718$ |
$[1, 1, 0, -508513, 139408945]$ |
\(y^2+xy=x^3+x^2-508513x+139408945\) |
246.2.0.? |
$[ ]$ |
| 454854.h1 |
454854h1 |
454854.h |
454854h |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( - 2^{11} \cdot 3^{8} \cdot 41 \cdot 43^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14104$ |
$2$ |
$0$ |
$0.843857326$ |
$1$ |
|
$4$ |
$18213888$ |
$2.560654$ |
$-11779205551777/23689304064$ |
$0.90025$ |
$4.15752$ |
$[1, 0, 1, -876465, 668049220]$ |
\(y^2+xy+y=x^3-876465x+668049220\) |
14104.2.0.? |
$[(1874, 73947)]$ |
| 454854.i1 |
454854i1 |
454854.i |
454854i |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( - 2 \cdot 3 \cdot 41 \cdot 43^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$984$ |
$2$ |
$0$ |
$166.7625125$ |
$1$ |
|
$0$ |
$94795008$ |
$3.315163$ |
$-4617711815194147190977/454854$ |
$0.98126$ |
$5.56132$ |
$[1, 0, 1, -641462515, -6253292589220]$ |
\(y^2+xy+y=x^3-641462515x-6253292589220\) |
984.2.0.? |
$[(107700298305004951422344077357817822150530033522629377183442735947455267032/21015272004901187159440661382424067, 1110282529392941976858031771643539932164937202708028044914846469111757751864866964615698369500301995250503228817/21015272004901187159440661382424067)]$ |
| 454854.j1 |
454854j1 |
454854.j |
454854j |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( - 2^{3} \cdot 3^{7} \cdot 41 \cdot 43^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$984$ |
$2$ |
$0$ |
$0.805407974$ |
$1$ |
|
$4$ |
$6604416$ |
$1.977552$ |
$-2177286259681/717336$ |
$0.97361$ |
$3.91295$ |
$[1, 0, 1, -499269, 135781288]$ |
\(y^2+xy+y=x^3-499269x+135781288\) |
984.2.0.? |
$[(326, 2610)]$ |
| 454854.k1 |
454854k2 |
454854.k |
454854k |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( 2^{6} \cdot 3^{6} \cdot 41^{2} \cdot 43^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$21156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$45771264$ |
$3.139080$ |
$5351110501771/78428736$ |
$0.92174$ |
$4.84805$ |
$[1, 0, 1, -28972020, 59255429938]$ |
\(y^2+xy+y=x^3-28972020x+59255429938\) |
2.3.0.a.1, 172.6.0.?, 492.6.0.?, 21156.12.0.? |
$[ ]$ |
| 454854.k2 |
454854k1 |
454854.k |
454854k |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( 2^{12} \cdot 3^{3} \cdot 41 \cdot 43^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$21156$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$22885632$ |
$2.792507$ |
$9677214091/4534272$ |
$0.89407$ |
$4.36330$ |
$[1, 0, 1, -3529780, -1113917134]$ |
\(y^2+xy+y=x^3-3529780x-1113917134\) |
2.3.0.a.1, 172.6.0.?, 492.6.0.?, 10578.6.0.?, 21156.12.0.? |
$[ ]$ |
| 454854.l1 |
454854l1 |
454854.l |
454854l |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( - 2^{4} \cdot 3^{7} \cdot 41 \cdot 43^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$246$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12945408$ |
$2.373783$ |
$836999687/1434672$ |
$0.91950$ |
$3.93843$ |
$[1, 0, 1, 445570, -160310176]$ |
\(y^2+xy+y=x^3+445570x-160310176\) |
246.2.0.? |
$[ ]$ |
| 454854.m1 |
454854m1 |
454854.m |
454854m |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( - 2 \cdot 3^{3} \cdot 41 \cdot 43^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$42312$ |
$16$ |
$0$ |
$4.032114089$ |
$1$ |
|
$0$ |
$1572480$ |
$1.206394$ |
$-389017/2214$ |
$0.87552$ |
$2.90314$ |
$[1, 1, 1, -2812, -190093]$ |
\(y^2+xy+y=x^3+x^2-2812x-190093\) |
3.4.0.a.1, 129.8.0.?, 984.8.0.?, 42312.16.0.? |
$[(2263/2, 104975/2)]$ |
| 454854.m2 |
454854m2 |
454854.m |
454854m |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( - 2^{3} \cdot 3 \cdot 41^{3} \cdot 43^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$42312$ |
$16$ |
$0$ |
$1.344038029$ |
$1$ |
|
$4$ |
$4717440$ |
$1.755701$ |
$270840023/1654104$ |
$0.95436$ |
$3.39592$ |
$[1, 1, 1, 24923, 4691267]$ |
\(y^2+xy+y=x^3+x^2+24923x+4691267\) |
3.4.0.a.1, 129.8.0.?, 984.8.0.?, 42312.16.0.? |
$[(-47, 1872)]$ |
| 454854.n1 |
454854n2 |
454854.n |
454854n |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( 2^{6} \cdot 3^{6} \cdot 41^{2} \cdot 43^{3} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$21156$ |
$12$ |
$0$ |
$3.500641673$ |
$1$ |
|
$12$ |
$1064448$ |
$1.258478$ |
$5351110501771/78428736$ |
$0.92174$ |
$3.11581$ |
$[1, 1, 1, -15669, -751845]$ |
\(y^2+xy+y=x^3+x^2-15669x-751845\) |
2.3.0.a.1, 172.6.0.?, 492.6.0.?, 21156.12.0.? |
$[(-69, -48), (177, 1346)]$ |
| 454854.n2 |
454854n1 |
454854.n |
454854n |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( 2^{12} \cdot 3^{3} \cdot 41 \cdot 43^{3} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$21156$ |
$12$ |
$0$ |
$3.500641673$ |
$1$ |
|
$13$ |
$532224$ |
$0.911905$ |
$9677214091/4534272$ |
$0.89407$ |
$2.63105$ |
$[1, 1, 1, -1909, 13211]$ |
\(y^2+xy+y=x^3+x^2-1909x+13211\) |
2.3.0.a.1, 172.6.0.?, 492.6.0.?, 10578.6.0.?, 21156.12.0.? |
$[(7, 12), (55, 252)]$ |
| 454854.o1 |
454854o1 |
454854.o |
454854o |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( - 2^{4} \cdot 3^{7} \cdot 41 \cdot 43^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$246$ |
$2$ |
$0$ |
$2.617230979$ |
$1$ |
|
$2$ |
$301056$ |
$0.493183$ |
$836999687/1434672$ |
$0.91950$ |
$2.20619$ |
$[1, 1, 1, 241, 2117]$ |
\(y^2+xy+y=x^3+x^2+241x+2117\) |
246.2.0.? |
$[(5, 56)]$ |
| 454854.p1 |
454854p1 |
454854.p |
454854p |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( - 2^{2} \cdot 3^{11} \cdot 41^{2} \cdot 43^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$516$ |
$2$ |
$0$ |
$13.29710549$ |
$1$ |
|
$0$ |
$22767360$ |
$2.624813$ |
$85131738691271/51218866404$ |
$0.93404$ |
$4.19432$ |
$[1, 1, 1, 1694570, 169747799]$ |
\(y^2+xy+y=x^3+x^2+1694570x+169747799\) |
516.2.0.? |
$[(3722701/12, 7169663621/12)]$ |
| 454854.q1 |
454854q1 |
454854.q |
454854q |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( 2^{14} \cdot 3^{12} \cdot 41 \cdot 43^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$328$ |
$12$ |
$0$ |
$4.793127267$ |
$1$ |
|
$1$ |
$126443520$ |
$3.594978$ |
$10341755683137709164937/356992303104$ |
$1.06164$ |
$5.62321$ |
$[1, 1, 1, -839254667, 9357773289401]$ |
\(y^2+xy+y=x^3+x^2-839254667x+9357773289401\) |
2.3.0.a.1, 8.6.0.d.1, 82.6.0.?, 328.12.0.? |
$[(2354067/11, 822762986/11)]$ |
| 454854.q2 |
454854q2 |
454854.q |
454854q |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( - 2^{7} \cdot 3^{24} \cdot 41^{2} \cdot 43^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$328$ |
$12$ |
$0$ |
$9.586254534$ |
$1$ |
|
$0$ |
$252887040$ |
$3.941555$ |
$-10298071306410575356297/60769798505543808$ |
$1.06173$ |
$5.62366$ |
$[1, 1, 1, -838071307, 9385479533753]$ |
\(y^2+xy+y=x^3+x^2-838071307x+9385479533753\) |
2.3.0.a.1, 8.6.0.a.1, 164.6.0.?, 328.12.0.? |
$[(355699/5, 72203358/5)]$ |
| 454854.r1 |
454854r1 |
454854.r |
454854r |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( - 2^{2} \cdot 3 \cdot 41 \cdot 43^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$246$ |
$2$ |
$0$ |
$11.87485838$ |
$1$ |
|
$0$ |
$198912$ |
$0.107694$ |
$-1244181049/492$ |
$0.82241$ |
$2.18494$ |
$[1, 0, 0, -275, -1779]$ |
\(y^2+xy=x^3-275x-1779\) |
246.2.0.? |
$[(159738/67, 49951797/67)]$ |
| 454854.s1 |
454854s1 |
454854.s |
454854s |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( - 2^{11} \cdot 3 \cdot 41 \cdot 43^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$984$ |
$2$ |
$0$ |
$1.635161291$ |
$1$ |
|
$2$ |
$3548160$ |
$1.693010$ |
$-7916293657/251904$ |
$0.93151$ |
$3.48587$ |
$[1, 0, 0, -76772, 8403216]$ |
\(y^2+xy=x^3-76772x+8403216\) |
984.2.0.? |
$[(1272, 43740)]$ |
| 454854.t1 |
454854t1 |
454854.t |
454854t |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( - 2^{10} \cdot 3^{5} \cdot 41^{2} \cdot 43^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$516$ |
$2$ |
$0$ |
$0.419374241$ |
$1$ |
|
$6$ |
$102009600$ |
$3.165699$ |
$-19178458591950217/33256712070144$ |
$0.94357$ |
$4.71649$ |
$[1, 0, 0, -10310987, 25475451249]$ |
\(y^2+xy=x^3-10310987x+25475451249\) |
516.2.0.? |
$[(9958, 949105)]$ |
| 454854.u1 |
454854u1 |
454854.u |
454854u |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( 2^{18} \cdot 3^{5} \cdot 41 \cdot 43^{7} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$42312$ |
$12$ |
$0$ |
$3.288125076$ |
$1$ |
|
$13$ |
$45239040$ |
$2.901077$ |
$74202895742358313/112304848896$ |
$0.93297$ |
$4.71400$ |
$[1, 0, 0, -16187109, -25035530751]$ |
\(y^2+xy=x^3-16187109x-25035530751\) |
2.3.0.a.1, 8.6.0.d.1, 10578.6.0.?, 42312.12.0.? |
$[(-2340, 6717), (41806/3, 7553/3)]$ |
| 454854.u2 |
454854u2 |
454854.u |
454854u |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( - 2^{9} \cdot 3^{10} \cdot 41^{2} \cdot 43^{8} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$42312$ |
$12$ |
$0$ |
$3.288125076$ |
$1$ |
|
$18$ |
$90478080$ |
$3.247650$ |
$-26287353527251753/93969546895872$ |
$0.95259$ |
$4.78563$ |
$[1, 0, 0, -11453669, -39971427327]$ |
\(y^2+xy=x^3-11453669x-39971427327\) |
2.3.0.a.1, 8.6.0.a.1, 21156.6.0.?, 42312.12.0.? |
$[(8668, 711229), (5314, 219223)]$ |
| 454854.v1 |
454854v1 |
454854.v |
454854v |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( - 2 \cdot 3^{4} \cdot 41^{5} \cdot 43^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14104$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$26611200$ |
$2.854023$ |
$1197736492998599/807054296166$ |
$0.93498$ |
$4.39727$ |
$[1, 0, 0, 4090874, 1291450202]$ |
\(y^2+xy=x^3+4090874x+1291450202\) |
14104.2.0.? |
$[ ]$ |
| 454854.w1 |
454854w1 |
454854.w |
454854w |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( 2^{6} \cdot 3^{4} \cdot 41 \cdot 43^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$328$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3870720$ |
$1.738735$ |
$32553430057/212544$ |
$0.94292$ |
$3.59029$ |
$[1, 0, 0, -122997, -16519455]$ |
\(y^2+xy=x^3-122997x-16519455\) |
2.3.0.a.1, 8.6.0.d.1, 82.6.0.?, 328.12.0.? |
$[ ]$ |
| 454854.w2 |
454854w2 |
454854.w |
454854w |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( - 2^{3} \cdot 3^{8} \cdot 41^{2} \cdot 43^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$328$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7741440$ |
$2.085308$ |
$-2062933417/88232328$ |
$1.00890$ |
$3.70984$ |
$[1, 0, 0, -49037, -36178023]$ |
\(y^2+xy=x^3-49037x-36178023\) |
2.3.0.a.1, 8.6.0.a.1, 164.6.0.?, 328.12.0.? |
$[ ]$ |
| 454854.x1 |
454854x2 |
454854.x |
454854x |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( 2^{10} \cdot 3^{16} \cdot 41^{2} \cdot 43^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$7052$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$170311680$ |
$3.741158$ |
$1537276934430978316057/3186223241260032$ |
$1.17121$ |
$5.47689$ |
$[1, 0, 0, -444576372, 3601505631888]$ |
\(y^2+xy=x^3-444576372x+3601505631888\) |
2.3.0.a.1, 164.6.0.?, 172.6.0.?, 7052.12.0.? |
$[ ]$ |
| 454854.x2 |
454854x1 |
454854.x |
454854x |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( 2^{20} \cdot 3^{8} \cdot 41 \cdot 43^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$7052$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$85155840$ |
$3.394585$ |
$922625101256316697/521543718273024$ |
$0.98829$ |
$4.90747$ |
$[1, 0, 0, -37500532, 13457762960]$ |
\(y^2+xy=x^3-37500532x+13457762960\) |
2.3.0.a.1, 82.6.0.?, 172.6.0.?, 7052.12.0.? |
$[ ]$ |
| 454854.y1 |
454854y1 |
454854.y |
454854y |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( - 2^{15} \cdot 3^{6} \cdot 41^{5} \cdot 43^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$328$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$591645600$ |
$4.178741$ |
$-6702384370794891073/2767558099894272$ |
$0.98832$ |
$5.67844$ |
$[1, 0, 0, -891424202, 13409666278692]$ |
\(y^2+xy=x^3-891424202x+13409666278692\) |
328.2.0.? |
$[ ]$ |