Learn more

Refine search


Results (38 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
454854.a1 454854.a \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -132447606, -531315978156]$ \(y^2+xy=x^3+x^2-132447606x-531315978156\) 2.3.0.a.1, 164.6.0.?, 172.6.0.?, 7052.12.0.? $[ ]$
454854.a2 454854.a \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -30678646, 56359058260]$ \(y^2+xy=x^3+x^2-30678646x+56359058260\) 2.3.0.a.1, 82.6.0.?, 172.6.0.?, 7052.12.0.? $[ ]$
454854.b1 454854.b \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $3.902511780$ $[1, 1, 0, -482111, -168862011]$ \(y^2+xy=x^3+x^2-482111x-168862011\) 328.2.0.? $[(3311/2, -1097/2)]$
454854.c1 454854.c \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $2.716240744$ $[1, 1, 0, -1071560253, 13500773335581]$ \(y^2+xy=x^3+x^2-1071560253x+13500773335581\) 5.12.0.a.2, 215.24.0.?, 984.2.0.?, 4920.24.1.?, 211560.48.1.? $[(-37027, 1572598)]$
454854.c2 454854.c \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $13.58120372$ $[1, 1, 0, -323613, 2212737021]$ \(y^2+xy=x^3+x^2-323613x+2212737021\) 5.12.0.a.1, 215.24.0.?, 984.2.0.?, 4920.24.1.?, 211560.48.1.? $[(-19817107/121, 24520038229/121)]$
454854.d1 454854.d \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $1$ $\Z/2\Z$ $11.52025497$ $[1, 1, 0, -811749, 281149587]$ \(y^2+xy=x^3+x^2-811749x+281149587\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 328.24.0.?, 344.24.0.?, $\ldots$ $[(3842661/85, 122199879/85)]$
454854.d2 454854.d \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.760127486$ $[1, 1, 0, -53659, 3840265]$ \(y^2+xy=x^3+x^2-53659x+3840265\) 2.6.0.a.1, 8.12.0.b.1, 164.12.0.?, 172.12.0.?, 328.24.0.?, $\ldots$ $[(13165/3, 1473320/3)]$
454854.d3 454854.d \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $1$ $\Z/2\Z$ $2.880063743$ $[1, 1, 0, -16679, -782235]$ \(y^2+xy=x^3+x^2-16679x-782235\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 82.6.0.?, 164.12.0.?, $\ldots$ $[(1458, 54741)]$
454854.d4 454854.d \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $1$ $\Z/2\Z$ $2.880063743$ $[1, 1, 0, 112751, 23110543]$ \(y^2+xy=x^3+x^2+112751x+23110543\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 172.12.0.?, 328.24.0.?, $\ldots$ $[(91, 5797)]$
454854.e1 454854.e \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1828699, -952573475]$ \(y^2+xy=x^3+x^2-1828699x-952573475\) 2.3.0.a.1, 8.6.0.d.1, 10578.6.0.?, 42312.12.0.? $[ ]$
454854.e2 454854.e \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1754739, -1033056747]$ \(y^2+xy=x^3+x^2-1754739x-1033056747\) 2.3.0.a.1, 8.6.0.a.1, 21156.6.0.?, 42312.12.0.? $[ ]$
454854.f1 454854.f \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $45.51420827$ $[1, 1, 0, -1325771, -736846947]$ \(y^2+xy=x^3+x^2-1325771x-736846947\) 984.2.0.? $[(1663019610582310593337/1100629711, 6714445717004841097364525863037/1100629711)]$
454854.g1 454854.g \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -508513, 139408945]$ \(y^2+xy=x^3+x^2-508513x+139408945\) 246.2.0.? $[ ]$
454854.h1 454854.h \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $0.843857326$ $[1, 0, 1, -876465, 668049220]$ \(y^2+xy+y=x^3-876465x+668049220\) 14104.2.0.? $[(1874, 73947)]$
454854.i1 454854.i \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $166.7625125$ $[1, 0, 1, -641462515, -6253292589220]$ \(y^2+xy+y=x^3-641462515x-6253292589220\) 984.2.0.? $[(107700298305004951422344077357817822150530033522629377183442735947455267032/21015272004901187159440661382424067, 1110282529392941976858031771643539932164937202708028044914846469111757751864866964615698369500301995250503228817/21015272004901187159440661382424067)]$
454854.j1 454854.j \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $0.805407974$ $[1, 0, 1, -499269, 135781288]$ \(y^2+xy+y=x^3-499269x+135781288\) 984.2.0.? $[(326, 2610)]$
454854.k1 454854.k \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -28972020, 59255429938]$ \(y^2+xy+y=x^3-28972020x+59255429938\) 2.3.0.a.1, 172.6.0.?, 492.6.0.?, 21156.12.0.? $[ ]$
454854.k2 454854.k \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -3529780, -1113917134]$ \(y^2+xy+y=x^3-3529780x-1113917134\) 2.3.0.a.1, 172.6.0.?, 492.6.0.?, 10578.6.0.?, 21156.12.0.? $[ ]$
454854.l1 454854.l \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 445570, -160310176]$ \(y^2+xy+y=x^3+445570x-160310176\) 246.2.0.? $[ ]$
454854.m1 454854.m \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $4.032114089$ $[1, 1, 1, -2812, -190093]$ \(y^2+xy+y=x^3+x^2-2812x-190093\) 3.4.0.a.1, 129.8.0.?, 984.8.0.?, 42312.16.0.? $[(2263/2, 104975/2)]$
454854.m2 454854.m \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $1.344038029$ $[1, 1, 1, 24923, 4691267]$ \(y^2+xy+y=x^3+x^2+24923x+4691267\) 3.4.0.a.1, 129.8.0.?, 984.8.0.?, 42312.16.0.? $[(-47, 1872)]$
454854.n1 454854.n \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $2$ $\Z/2\Z$ $3.500641673$ $[1, 1, 1, -15669, -751845]$ \(y^2+xy+y=x^3+x^2-15669x-751845\) 2.3.0.a.1, 172.6.0.?, 492.6.0.?, 21156.12.0.? $[(-69, -48), (177, 1346)]$
454854.n2 454854.n \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $2$ $\Z/2\Z$ $3.500641673$ $[1, 1, 1, -1909, 13211]$ \(y^2+xy+y=x^3+x^2-1909x+13211\) 2.3.0.a.1, 172.6.0.?, 492.6.0.?, 10578.6.0.?, 21156.12.0.? $[(7, 12), (55, 252)]$
454854.o1 454854.o \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $2.617230979$ $[1, 1, 1, 241, 2117]$ \(y^2+xy+y=x^3+x^2+241x+2117\) 246.2.0.? $[(5, 56)]$
454854.p1 454854.p \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $13.29710549$ $[1, 1, 1, 1694570, 169747799]$ \(y^2+xy+y=x^3+x^2+1694570x+169747799\) 516.2.0.? $[(3722701/12, 7169663621/12)]$
454854.q1 454854.q \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $1$ $\Z/2\Z$ $4.793127267$ $[1, 1, 1, -839254667, 9357773289401]$ \(y^2+xy+y=x^3+x^2-839254667x+9357773289401\) 2.3.0.a.1, 8.6.0.d.1, 82.6.0.?, 328.12.0.? $[(2354067/11, 822762986/11)]$
454854.q2 454854.q \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $1$ $\Z/2\Z$ $9.586254534$ $[1, 1, 1, -838071307, 9385479533753]$ \(y^2+xy+y=x^3+x^2-838071307x+9385479533753\) 2.3.0.a.1, 8.6.0.a.1, 164.6.0.?, 328.12.0.? $[(355699/5, 72203358/5)]$
454854.r1 454854.r \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $11.87485838$ $[1, 0, 0, -275, -1779]$ \(y^2+xy=x^3-275x-1779\) 246.2.0.? $[(159738/67, 49951797/67)]$
454854.s1 454854.s \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $1.635161291$ $[1, 0, 0, -76772, 8403216]$ \(y^2+xy=x^3-76772x+8403216\) 984.2.0.? $[(1272, 43740)]$
454854.t1 454854.t \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $0.419374241$ $[1, 0, 0, -10310987, 25475451249]$ \(y^2+xy=x^3-10310987x+25475451249\) 516.2.0.? $[(9958, 949105)]$
454854.u1 454854.u \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $2$ $\Z/2\Z$ $3.288125076$ $[1, 0, 0, -16187109, -25035530751]$ \(y^2+xy=x^3-16187109x-25035530751\) 2.3.0.a.1, 8.6.0.d.1, 10578.6.0.?, 42312.12.0.? $[(-2340, 6717), (41806/3, 7553/3)]$
454854.u2 454854.u \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $2$ $\Z/2\Z$ $3.288125076$ $[1, 0, 0, -11453669, -39971427327]$ \(y^2+xy=x^3-11453669x-39971427327\) 2.3.0.a.1, 8.6.0.a.1, 21156.6.0.?, 42312.12.0.? $[(8668, 711229), (5314, 219223)]$
454854.v1 454854.v \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, 4090874, 1291450202]$ \(y^2+xy=x^3+4090874x+1291450202\) 14104.2.0.? $[ ]$
454854.w1 454854.w \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -122997, -16519455]$ \(y^2+xy=x^3-122997x-16519455\) 2.3.0.a.1, 8.6.0.d.1, 82.6.0.?, 328.12.0.? $[ ]$
454854.w2 454854.w \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -49037, -36178023]$ \(y^2+xy=x^3-49037x-36178023\) 2.3.0.a.1, 8.6.0.a.1, 164.6.0.?, 328.12.0.? $[ ]$
454854.x1 454854.x \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -444576372, 3601505631888]$ \(y^2+xy=x^3-444576372x+3601505631888\) 2.3.0.a.1, 164.6.0.?, 172.6.0.?, 7052.12.0.? $[ ]$
454854.x2 454854.x \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -37500532, 13457762960]$ \(y^2+xy=x^3-37500532x+13457762960\) 2.3.0.a.1, 82.6.0.?, 172.6.0.?, 7052.12.0.? $[ ]$
454854.y1 454854.y \( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -891424202, 13409666278692]$ \(y^2+xy=x^3-891424202x+13409666278692\) 328.2.0.? $[ ]$
  displayed columns for results